Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Медь Исл валентность

    Медь образует два оксида. На определенное количество меди при образовании первого оксида пошло вдвое больше кислорода, чем при образовании второго. Каково отношение валентности медн в первом оксиде к ее валентности во втором  [c.10]

    В качестве примера рассмотрим, при каких сочетаниях атомов меди и цинка возникает интерметаллид с объемноцентрированной кубической или гексагональной структурой. Поскольку медь (s ) имеет один, а цинк (5 ) два валентных электрона, электронная концентрация [c.255]

    Медь, серебро и золото несколько выпадают из общей для переходных металлов закономерности по своему электронному строению с валентной конфигурацией Они характеризуются более низкими температурами плавления и кипения, чем предшествующие им переходные элементы, и являются довольно мягкими металлами. Проявление таких свойств соответствует закономерной тенденции к ослаблению металлических связей, обнаруживаемой начиная с группы У1Б(Сг-Мо- У). Эта тенденция объясняется постепенным уменьшением числа неспаренных -электронов у атомов металлов второй половины переходных рядов. Медь, серебро и золото обладают очень большой электро- и теплопроводностью, поскольку их электронное строение обусловливает высокую подвижность 5-электронов. Эти металлы ковки, пластичны и инертны и могут находиться в природе в металлическом состоянии. Они встречаются довольно редко и поэтому имеют высокую стоимость, но все же распространены значительно больше, чем платиновые металлы. Относительно большая распространенность и возможность существования этих металлов в природе в несвязанном виде послужили причиной того, что они явились первыми металлами, с которыми познакомился чёловск и кошрые иН научился обрабатывать. По-видимому, первым металлом, который стали восстанавливать из его руды, была медь. Металлургия началась с открытия того, что сплав меди с оловом (естественно встречающаяся примесь) дает намного более твердый материал - бронзу. Медные предметы были найдены [c.446]


    Один и тот же центр может выполнять несколько функций, в частности таким свойством обладают анионные центры, участвующие не только в анионном обмене, но в адсорбции и электронном обмене. Работа некоторых катионных центров связана с изменением валентности катиона (например, Си+ч= Си +), и это позволяет им активно участвовать в процессах адсорбции и электронного обмена по окислительно-восстановительному механизму [5]. Наибольшей каталитической активностью обладают соли металлов переменной валентности (кобальта, марганца, железа, никеля, хрома, серебра, меди), действующие по описанному механизму (см. гл. 2). [c.196]

    Гидроксокарбонат меди Валентности Н — I, О — II, Си — II, С — IV. Степени окисления Н +1, О -2, Си +2, С [c.470]

    Влиянию примесей металлов переменной валентности на окисление и стабильность синтетических каучуков посвящено значительное количество исследований. В литературе имеется большое количество данных по каталитическому влиянию на эти процессы железа [29—37, 39], меди [29—34, 37, 38, 41], марганца [30—33, 34, 37], кобальта [14, с. 111, 33, 34], никеля [34, 46], ванадия [34, 42], церия [33, 34], свинца [33, 34], олова [33], титана [43—47]. [c.629]

    Нормальные окислительно-восстановительные потенциалы наиболее характерных для элементов подгруппы меди валентных переходов составляют (первая цифра отвечает кислой среде, вторая — щелочной) u+ -f 2е = Си (-f0,34 и —0,22 в) Ag+ -fe = Ag (-1-0,80 и -f0,34 s) Au+ -f3e = Au (-1-1,45 и -f0,7 в). Для последовательных переходов Си+ -f в = Си и Си+ е = Си в кислой среде даются значения -1-0,16 и 0,52 в. [c.256]

    Галоидирование. Катализаторы, наиболее часто применяющиеся для хлорирования металлическое железо, окись меди, бром, сера, иод, галоиды железа, сурьмы, олова, мышьяка, фосфора, алюминия и меди растительный и животный уголь, активированный боксит и другие глины. Большинство этих катализаторов является носителями галоидов. Так, Fe, Sb и Р в галоидных соединениях способны существовать в двух валентных состояниях в присутствии свободного хлора они поочередно присоединяют и отдают хлор в активной форме. Аналогично иод, бром и сера образуют с хлором неустойчивые соединения. Катализаторы броми-рования подобны катализаторам хлорирования. Для иодирования наилучшим ускорителем служит фосфор. Для проведения процесса фторирования катализатор не требуется. В присутствии кислорода галоидирование замедляется. [c.329]

    Гидроксокарбонат меди Валентности Н — I, О — П, Си — II, С — IV. [c.470]

    Высокая реакционная способность полиизопрена требует применения эффективных методов его стабилизации. Систематические исследования показали необходимость обеспечения высокой степени чистоты полиизопрена в отношении содержания в нем примесей металлов переменной валентности (железо, медь, титан), так как соединения этих металлов ускоряют окислительную деструкцию каучука. Другой способ повышения окислительной стойкости полимера —пассивация переходных металлов, остающихся в каучуке, путем перевода их соединений в неактивную форму, не оказывающую каталитического влияния на окисление полимера. [c.221]

    Катализаторами, ускоряющими окисление бензинов и дизельных топлив при хранении, могут быть металлические поверхности резервуаров и трубопроводов, а также оксиды и соли, покрывающие эти поверхности. Ускорение окисления вызывается, кроме того, оксидами и солями металлов, которые могут находиться в топливах в виде тонкодисперсной взвеси. Каталитическую активность в основном проявляют металлы переменной валентности— железо, медь, хром, марганец, кобальт [66]. [c.58]

    Рассчитайте константу равновесия реакции Си + Си - 2Си при 25 °С. Ион какой валентности преобладает при анодном растворении меди в условиях равновесия между ионами и металлом  [c.394]


    Каталитическое влияние меди на окисление натурального каучука было установлено еще в 1865 г. [26]. В дальнейшем вопросу каталитического влияния металлов переменной валентности на окисление и стабильность натурального каучука и вулканизатов на его основе было посвящено много исследований [27, с. 27]. [c.628]

    Когда элемент образует несколько рядов соединений, соответствующих различным степеням окисления, после названия соединения в скобках дается указание либо на валентность катиона (римской цифрой), либо на число атомов галогена, кислорода, серы или кислотного остатка в молекуле соединения (прописью). Например, железо хлористое (П1), фосфор хлористый трех), марганца окись (дву). При этом обозначение валентности дается обычно для менее характерных валентных состояний. Например, для меди в случае двухвалентного состояния указание на валентность опускается, одновалентная же медь обозначается так медь иодистая (I). [c.9]

    Анод должен растворяться количественно с образованием акваионов (или комплексных ионов) одной определенной валентности. Таким требованиям должны удовлетворять аноды при получении некоторых гальванических покрытий, например в процессах меднения, никелирования или цинкования. Если проводить меднение в кислых ваннах, то необходимо, чтобы медь растворялась в виде двухвалентных ионов. Реакция [c.474]

    Несмотря на значительный прогресс в области повышения качества и стандартности натурального каучука и в настоящее время содержание металлов переменной валентности в нем сравнительно высоко. В стандартном малазийском каучуке содержание меди, марганца и железа может соответственно достигать 0,0008, 0,002 и 0,01% (масс.). Однако эти металлы связаны с определен- [c.628]

    Металлы переменной валентности (за исключением железа) оказывают незначительное влияние на окисление бутадиен-нитрильного каучука [33, 37], и медь в данном случае проявляет функции ингибитора процесса окисления. Это обстоятельство, а также ранее приведенные факты двойственного характера влияния меди на окисление полибутадиена [39] позволяют предположить, что возможен синтез стабилизаторов для синтетических каучуков, которые в своем составе содержат металлы переменной валентности. Описана возможность применения диалкилдитиокарбаматов этих металлов для стабилизации каучуков [29]. [c.630]

    ВИИ металлов переменной валентности ванадия (III), хрома (1П) , марганца (III), кобальта (II), никеля (II), железа (III), меди (II), молибдена (VI) приводило к образованию метилфенилкарбинола, ацетофенона, фенола [221]. [c.263]

    Назначение. Деактиваторы (инактиваторы, пассивато-ры) металлов — это присадки, подавляющие каталитическое действие металлов на окисление топлив. Деактиваторы, как правило, добавляют к топливу совместно с антиокислителями в концентрациях, в 5—10 раз меньших, чем антиокислитель. Они могут быть также компонентами двух- и трехкомпонентных присадок [1 — 11]. Установлено, что металлы переменной валентности являются сильными катализаторами окисления углеводородных топлив [1—5, II —17]. Металлы постоянно контактируют с топливами — в нефтезаводской, перекачивающей аппаратуре и в двигателях, входят в виде микропримесей в их состав. В топливных дистиллятах обнаружено присутствие алюминия, берилия, ванадия, висмута, железа, золота, кремния, калия, кальция, кобальта, меди, молибдена, натрия, никеля, олова рубидия, серебра, свинца, стронция, титана, цинка и др. [18—21]. [c.122]

    V ат. % 2 дает прямую с положительным наклоном. Подобный обобщенный график дан на рис. 5.16. Чтобы прямая с наклоном. равным 1 проходила через начало координат, пришлось принять, что передано не 100,,% валентных электронов, а 80 %. Это означает, что большинство, но не все валентные электроны меди и других непереходных элементов заимствуются никелем. Принимая, что атом меди в медно-никелевом сплаве отдает атому никеля 0,8 электрона, получаем критическое содержание никеля, ниже которого -оболочка заполнена, 35 ат. % вместо 41 ат. %, как рассчитано ранее . Это значение согласуется с составом, при котором /пас И / рит пересекаются на рис. 5.14. До сих пор не внесена ясность в вопрос, относится ли эта цифра — 80 % до-норных электронов — только к взаимодействию электронов поверхностных атомов металла-, на которых образуются пассивные пленки, или ко всему сплаву. [c.96]

    Отражает ли значение стехиометрической валентности меди структуру соединения Можно ли по координационному числу атома судить о его валентности  [c.81]

    Несмотря на значительно меньшую концентрацию енольной формы (на 5— 7 порядков), чем кетонной, она окисляется легко, и, видимо, через енольную форму идет в основном окисление кетонов ионами переменной валентности. При изучении окисления метилэтилкетона комплексами марганца меди и железа в водных растворах было отмечено, что скорость енолизации намного выше скорости окисления кетона [310]. Однако нельзя исключить возможность окисления кетонной формы через предварительное вхождение в координационную сферу металла карбонильного кислорода [306], В углеводородном растворе окислению предшествует комплексообразование, что доказано на примере окисления циклогексанона стеаратом трехвалентного кобальта [309] [c.196]

    Исследование ИК-спектров оксидата, полученного каталитическим окислением дизельного топлива ДЛ-0.2 при 90°С в присутствии стеарата меди в течение 5 ч, показало наличие сложной смеси кислородсодержащих ароматических структур, о чем свидетельствуют полосы поглощения С=0-групп (1720 см" ) и групп ОН (3400-3500 см", 1030-1250 см" ), а также полоса при 3380 см", обусловленная валентными колебаниями фрагмента О-Н ассоциированной гидропероксидной группы. Широкая полоса при 800-1450 см" также указывает на значительное содержание в оксидате кислородсодержащих структур. В этой области и проявляются валентные колебания С=0-группы сложных эфиров ароматических кислот (1300-1250, 1150-1100 см" ), фенолов (1220-1200 см" ), ароматических и арилароматических эфиров (1270—1230 см" ), а также плоскостные деформационные колебания ОН-групп первичных, вторичных, третичных спиртов и фенолов [107]. [c.158]

    Металлические кристаллы. У элементов типа натрия и меди имеется только один валентный s-электгон, так что в их кристаллах валентная зона, построенная из атомных 5-орбиталей, заполнена лишь наполовину (рис. 75, б). Следовательно, при незначительном возбуждении энергетическое состояние каждого из электронов может меняться в пределах всей энергетической зоны. Это имеет место, например, при приложении к металлу электрического поля. Тогда электроны начинают двигаться в направлении поля, что определяет электрическую проводимость металлов. [c.116]

    Одним из путей подавления каталитической активности примесей металлов переменной валентности в процессах окисления является перевод их в неактивную форму за счет образования комплексов или хелатов. В качестве таких агентов могут применяться антиоксиданты, относящиеся к производным /г-фениленди-амина [30, 31], которые пассивируют каталитическое действие меди, марганца и железа в процессе окисления каучуков. Аналогичный эффект наблюдался при введении в высокомаслонапол-ненный бутадиен-стирольный каучук, содержащий повышенное количество меди и железа, таких антиоксидантов, как п-гидрокси- фенил-р-нафтиламин (параоксинеозон) или меркаптобензимидазол [31]. Достаточно эффективными пассиваторами меди в процессе окислительной деструкции каучуков является щавелевая кислота, аминобензойные кислоты, продукт конденсации бензальдегида с гидразином [41]. [c.631]


    Отсюда по уравнеиню (130) получим (валентность меди и ции ка о = 2)  [c.255]

    Наряду с жидкими и газообразными окислителями для очистки сточных вод применяются и твердые оксиды и гидроксиды металлов переменной валентности (никеля, кобальта, меди, железа, марганца). Гидроксид никеля высшей валентности легко окисляет тидразингидрат, спирты, альдегиды, алифатические и ароматические амины. Продуктами окисления являются в основном карбонаты, азот и вода. Метод рекомендуется для обезвреживания сточных вод с концентрацией токсичных соединений до 0,5 г/л, что является его недостатком. [c.494]

    Галоидирование и дегалоидирование. Активные катализаторы имеют более чем одно валентное состояние и способны свободно пр1исоединять и отдавать галоиды. Катализаторы реакции данного типа в газовой фазе—это галоиды серебра и меди, осажденные на носителйх, таких как силикагель катализатором реакций в жидкой фазе служит, как правило, хлорное железо. [c.313]

    В большинстве случаев адипиновую кислоту получают в две стадии. Первая — окисление циклогексана в циклогексанон и цик-логексанол воздухом (или смесью кислорода и азота, обогашенной кислородом) в газо-жидкостной системе при 3—5 ат и 120—-130 °С в присутствии растворимых нафтенатов и стеаратов металлов с несколькими валентными состояниями (Со, Мп, Си, Ре, Сг). Реакцию можно проводить также в присутствии органических перекисей или альдегидов и кетонов в качестве промоторов. Вторая стадия — окисление смеси циклогексанол — циклогексанон — осуществляется в промышленности по непрерывной схеме 50%-ной азотной кислотой в присутствии твердых катализаторов (медь, ванадий) при 80 °С и небольшом давлении. И в этом случае можно проводить окисление воздухом, но в иных, чем на первой ступени, условиях. [c.159]

    Согласно теории Тейлора (20-е годы XX века),-активными центрами катализатора являются поверхностные атомы кристаллической р ШШ( й7 по каким-либо причинам находящиеся выше среднего уровня поверхности. Такие кристаллические пики обладают свободными валентностями и оказываются способными к образованию реакционноспособных промежуточных соединений, Представление об активной части поверхности как образовании, аномальном по сравнению с нормальной кристаллической поверхностью, находит свое подтверждение и в ряде качественных наблюдений. Например, Пальмер и Кон-стейбл, исследуя дегидратирование спиртов на металлической меди [c.335]

    Существуют две номенклатуры оксидов международная и русская. Согласно международной номенклатуре все соедирюиия элементов с кислородом (за исключением пероксидов — см. ниже)-называются оксидами. При этом для элементов иеремопюй валентности в скобках римскими цифрами указывается валентность, которую элемент проявляет в данном оксиде. Так, СаО называется оксид кальция, а uiO и СиО — оксид меди (I) и оксид меди (II). Оксиды состава ЭО2 или . Оз называют также, соответственно, диоксидами и триоксидами. [c.40]

    Основные стадии кумольного метода — окисление кумола в гидроперекись и кислотное разлохение гидроперекиси. Окнсление проводят двумя способами 1) в водно-щелочной эмульсии при 130 °С и давлении 0,5—1 МПа кислородом воздуха до конверсии 25% 2) в жидкой фазе при 120 °<] кислородом воздуха в присутствии катализатора — меди (в виде насадки) или солей металлов переменной валентности (нафтенагы, резинаты). [c.286]

    Сходный способ предложен также Бондом (597). Он основан тояг,е яа н. менении валентности меди, которая в данном случае применяется в виде олеата. Реакция протекает по уравнению  [c.186]

    Соли кобальта, марганца, меди железа и других металлов переменной валентности значительно ускоряют распад пероксидов, кетонов и др. Например, амины ускоряют разложение диа-цильных пероксидов кетонов. Распад пероксидов с применение.м указанных ускорителей происходит даже при комнатной температуре. Для предотвращения нежелательных последствий ускорители добавляют только в разбавленные растворы пероксидов. Это объясняется тем, что прямое попадание ускорителей в концентрированные органические пероксиды может вызвать их бурное разложение с саморазогревом и в ряде случаев с воспламенением. [c.25]

    Каталитическое окисление нефтяных остатков. Имеется множество попыток ускорить процесс окисления сырья, повысить качество или придать определенные свойства окисленному битуму с помощью различных катализаторов и инициаторов. В качестве катализаторов окислительногвосстановительных реакций предложено применять соли соляной кислоты и металлов переменной валентности (железа, меди, олова, титана и др.). В качестве катализаторов дегидратации, алкилирования и крекинга (перенос протонов) предложены хлориды алюминия, железа, олова, пятиокись фосфора в качестве инициаторов окисления — перекиси. Большинство из этих катализаторов инициирует реакции уплотнения молекул сырья (масел и смол) в асфальтены, не обогащая битумы кислородом. Возможности ускорения процесса окисления сырья и улучшения свойств битума (в основном в направлении повышения пенетрации при данной температуре размягчения), приводимые в многочисленной патентной литературе, обобщены в [63], но, поскольку авторы патентов делают свои предложения, не раскрывая химизма процесса, их выводы в настоящей монографии не рассматриваются. Исследования А. Хойберга [64, 65] [c.141]

    Термоокислительную стабильность силоксановых масел можно повысить введением определенных добавок. Обычные присадки, используемые для минеральных масел, здесь непригодны из-за малой эффективности, слабой растворимости в силоксанах и низкой стабильности. Полиорганосилоксаны можно ингибировать ароматическими аминами, производными бензойной кислоты [пат. США 4174284]. Наиболее перспективными и специфическими стабилизаторами полиорганосилоксановых жидкостей в последние годы проявили себя соединения некоторых металлов переменной валентности (железа, кобальта, марганца, меди, индия, никеля, титана, церия), а также их смеси [33, с. 324 193, с. 33 пат. США 3267031, 3725273 а. с. СССР 722942]. Механизм стабилизирующего действия металлов переменной валентности в полисилокса-нах основан на дезактивации пероксирадикалов 8Ю0 . При этом металл переходит из одного валентного состояния в другое с [c.160]

    В качестве противодымных присадок к топливам рекомендованы гидразин, а также соли его и растворимых в нефтепродуктах алкилзамещенных бензолсульфокислот, комплексы норборна-диенов с солями металлов переменной валентности, ацетилацето-наты железа, кобальта и меди, а также ферроцен и карбонилы железа. С целью снижения дымности выхлопных газов дизельных двигателей предлагается вводить в топливо растворимые в нем органические соли щелочноземельных металлов, а также сульфонаты кальция, бария или магния в виде растворов в легком бензине [15, с. 341]. Добавление к дизельному топливу дидецилсульфо- [c.280]

    В вертикальных столбцах таблицы — группах располагаются элементы, обладающие одинаковой валентностью в высших солеобразующих оксидах (она указана римской цифрой). Каждая группа разделена на две подгруппы, одна из которых (главная) включает элементы малых периодов и четных рядов больших периодов, а другая (побочная) образована элементами нечетных рядов больших периодов. Различия между главными и побочными подгруппами ярко проявляются в крайних группах таблицы (исключая VIII). Так, главная подгруппа I группы включает очень активные щелочные металлы, энергично разлагающие воду, тогда как побочная подгруппа состоит из меди Си,серебра Ag и золота Аи, малоактивных в химическом отношении. В VII группе главную подгруппу составляют активные неметаллы фтор F, хлор С1, бром Вг, иод I и астат At, тогда как у элементов побочной подгруппы — марганца Мп, технеция Тс и рения Re — преобладают металлические свойства. VIII группа элементов, занимающая особое положение, состоит из девяти элементов, разделенных на три триады очень сходных друг с другом элементов, и подгруппы благородных газов. [c.22]

    Получавшаяся соль одновалентной меди вновь окисляется надкис-лотой I. высшее валентное состояние. [c.361]

    Более 100 лет назад немецкие химики Цейзе, а затем Бирнбаум синтезировали и выделили твердые комплексные соединения олефиновых углеводородов Сз—Св с платиной (соли Цейзе). В последующий период многими исследователями было установлено, что способностью к образованию твердых и жидких комплексов с непредельными соединениями обладают также медь, серебро, железо н ряд других металлов переменной валентности. В основе комплексообразования лежит взаимодействие я-электронов двойных связей олефннового компонента (лиганда) с незаполненными орбиталями атома (иона) металла. Например, структура соединения (так называемого л-комплекса) ди- винила с хлористой платиной состава (Р1С12 )2-(С4Н )2 может быть представлена в виде  [c.302]

    Для выделения алкадиенов из смесел с алкенами и насыщенными углеводородами можно использовать хемосорбционные методы, основанные на образовании комплексов с различной стабильностью между непредельными углеводородами и солями металлов переходной валентности, в частности солями меди 1) и серебра. [c.81]

    Для выделения бутадиена ранее широко использовался процесс хемосорбции, основанный на способности алкенов образовывать координационные соединения с со.1ями металлов переменной валентности. Промышленное применение нашли водно-аммиачные растворы ацетата меди (I). [c.177]

    Если в СиЫЬОз валентность меди равна И, а валентность гто-бия — IV, соединение является парамагнитным, так как в нем имеется по одному неспаренному электрону в атомах меди и ниобия  [c.59]

    Конденсированные арены образуют твердые комплексы и с хлоридом сурьмы(III) в среде хлороформа или четыреххлористого углерода [140], с трифторметансульфонатом одновалентной меди [141] или серебра [142]. Для выделения моноциклических аренов в виде твердых комплексов предложены соединения типа М(А1Х4)п, где М = Си, Ag, 5п, РЬ и другие металлы X = С1, Вг п — валентность металла [143]. [c.72]

    Эта модель быда проверена на медно-никелеЁых сплавах, которые легировали небольшими количествами других непереходных У или переходных 2 элементов. При этом отмечали критический состав, при котором / рит и /пас совпадали или исчезал Фладе-потенциал. Добавки непереходных металлов с валентностью >1 должны были бы сдвигать критический состав в сторону увеличения содержания никеля, тогда как добавки переходных металлов имели бы противоположный эффект. Например, один двухвалентный атом цинка или трехвалентный атом алюминия были бы эквивалентны в твердом растворе двум или трем атомам меди, соответственно. Это было подтверждено экспериментально [53, 54]. Найдены соотношения [c.95]


Смотреть страницы где упоминается термин Медь Исл валентность: [c.22]    [c.40]    [c.533]    [c.193]    [c.370]    [c.59]   
Основы общей химии Том 2 Издание 3 (1973) -- [ c.245 ]




ПОИСК







© 2025 chem21.info Реклама на сайте