Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Металл атом, размер

    Кинетика химической коррозии. Скорость химической коррозии зависит от многих факторов и, в первую очередь, от характера продуктов коррозии. В процессе окисления на поверхности металла образуется твердая пленка оксидов. Для дальнейшего продолжения коррозии необходимо, чтобы ионы металла или кислород (или оба одновременно) диффундировали через эту пленку. Обычно с поверхности раздела металл — оксид в направлении от металла к внешней поверхности пленки происходит диффузия ионов металла, а не атомов, так как ионы металлов по размерам меньше атомов. Одновременно в этом же направлении должны перемеш,аться электроны. Ионы О имеют больший радиус, чем атомы, поэтому с поверхности раздела оксид — газ в глубь пленки двигаются не ионы, а атомы кислорода, которые в пленке ионизируются (О + 2е = О ") и, встречаясь с ионами металла, образуют оксиды. [c.209]


    В отличие от циклических органических соединений максимальная устойчивость обычно проявляется в хелатах с пятичленными циклами , потому что атом металла по размерам больше атома углерода, и валентные углы Ь—М—Ь будут составлять [c.359]

    На фиг. 71 показан запорный муфтовый вентиль для трубопроводов с условным проходом от 15 до 50 мм на давление (в зависимости от материала уплотняющих поверхностей) до 10 ат, размеры которого даны в ГОСТе 8444-57. Корпус и крышка изготовляются из ковкого чугуна (марка КЧ 30-6 по ГОСТу 1215-59) шпиндель из стали 25 уплотнительные поверхности могут быть выполнены в зависимости от назначения из цветного металла (фиг. 71, а), пластмасс (фиг. 71, б), кожи или резины (фиг. 71, в). [c.222]

    Обычно с поверхности раздела металл — оксид в направлении от металла к внешней поверхности пленки происходит диффузия ионов металла, а не ато- -ноо мов, так как ионы металлов по размерам меньше атомов. Одновременно в этом же направлении должны перемещаться электроны. Ионы 0 имеют больший радиус, чем атомы, поэтому с поверхности раздела [c.314]

    В каждом аппарате устанавливают два фильтра, работающие поочередно. Когда один фильтр оказывается забитым, переключают на второй, а первый отогревают для удаления СОо. Фильтрующий стакан фильтра изготовлен из пористой керамики [26] или пористого металла [23], размер пор от 60 до 100 ц. Жидкий воздух пропускается из наружной полости во внутреннюю. При сборке фильтров необходимо обеспечить тщательное уплотнение торцов. При самой малой неплотности значительная часть жидкости может пройти мимо фильтрующего стакана и работа фильтра нарушится. Чем меньше диаметр пор фильтра, тем лучше очистка, но размеры фильтра при этом приходится увеличивать, чтобы сопротивление фильтра не превышало 0,2—0,3 ат. Уменьшение размеров пор со 100 до 60 (л позволяет уменьшить количество СОг в жидкости после фильтра с 10—12 до 6—7 см /м . Усовершенствование работы регенераторов и применение фильтров твердой СОг позволяют обеспечить непрерывную работу крупных кислородных установок в течение года и более. [c.140]

    Все указанные типы деградации свойств независимо от механизма действия могут приводить к разрушению металла. Атом водорода имеет минимальные размеры из всех химических элементов с одним электроном. Ввиду высокой реакционной способности водород из молекулярной формы (Н ) может легко переходить в атомарную (Н) и ионную (Н ). Атомарный водород является единственной формой водорода, способной просачиваться (диффундировать) через металлы. Именно этим свойством водорода обусловлены все проблемы повреждения металлов. [c.10]

    При просачивании через металлы атом водорода проходит по пути наименьшего сопротивления между гранулами (кристаллитами) металла. В дефектах кристаллической решетки металла (микропорах, микротрещинах, дислокациях и тп.) атомарный водород может снова превращаться в молекулярный, размеры которого будут уже слишком большими для дальнейшего движения (просачивания) через металл. Вследствие этого молекулярный водород будет непрерывно накапливаться во внутренних дефектах металла во все растущих количествах, создавая в них огромное давление, в некоторых случаях с образованием расслоений или растрескивания металла. [c.10]

    Но атомы металлов третьего переходного ряда, от Ьи до Н , не настолько больше атомов соответствующих металлов второго переходного ряда, как можно было бы ожидать. Причина этого заключается в том, что после Ьа вклиниваются металлы первого внутреннего переходного ряда-лантаноиды. Переход от Ьа к Ьи сопровождается постепенным уменьшением размера атомов по причине возрастания ядерного заряда-этот эффект носит название лантаноидного сжатия. Поэтому атом гафния оказывается не столь большим, как следовало бы ожидать, если бы он располагался в периодической таблице непосредственно за Ьа. Заряд ядра у 2г на 18 единиц больше, чем у Т1, а у НГ он на 32 единицы больше, чем у 2г. Вследствие указанного обстоятельства металлы второго и третьего переходных рядов имеют не только одинаковые валентные электронные конфигурации в одинаковых группах, но также почти одинаковые размеры атомов. Поэтому металлы второго и третьего переходных рядов обладают большим сходством свойств между собой, чем с металлами первого переходного ряда. Титан напоминает 2г и НГ в меньшей мере, чем Zr и НГ напоминают друг друга. Ванадий отличается от МЬ и Та, но сами названия тантал и ниобий указывают, как трудно отделить их один от другого. Тантал и ниобий были открыты в 1801 и 1802 гг., но почти полвека многие химики считали, что имеют дело с одним и тем же элементом. Трудность выделения тантала послужила поводом назвать его именем мифического древнегреческого героя Тантала, обреченного на вечный бесцельный труд. В свою очередь ниобий получил свое название по имени Ниобы, дочери Тантала. [c.438]


    Твердые растворы замещения образуются путем частичного замещения ато,мов металла-растворителя атомами растворяемого металла. Такой процесс может происходить без возникновения в атоме значительных напряжений только в тех случаях, когда по размерам атомы не различаются значительно между собой. Элементы должны быть достаточно близкими по химическим свойствам, и лучше всего, если они будут принадлежать одной подгруппе периодической системы. Известны и другие ограничения. О твердых растворах см. 131 и 133. [c.139]

    Разработаны и частично применяются системы, позволяющие вводить и выводить катализатор в процессе работы установки. Это частично решает вопрос о борьбе с загрязнением катализатора металлами и тяжелыми коксовыми отложениями. Катализатор используют в виде гранул размером 0,8. мм, вводимых и выводимых через соответствующие штуцера, или в виде тонкодисперсного порошка, суспендированного вначале в жидком сырье, затем в продукте. В другом варианте процесса сырье и водород вводят в реактор снизу — в кипящий слой катализатора. Автор [ 87] указывает, что расход водорода составляет 1—2 моль на 1 моль сырья. Последнее подтверждается наблюдениями, согласно которым в каждой большой молекуле сырья содержится атом серы. Большая часть углеводородов с меньшей температурой кипения, по-видимому, образуется при гидрообессеривании нефтяных остатков в результате удаления атомов серы или азота, соединяющих две или больше углеводородные группы, а не разрыва связей С— С. [c.257]

    При соприкосновении с водой поверхностные атомы твердого тела подвергаются воздействию силового поля молекул воды, которые благодаря своему малому размеру как бы внедряются в кристаллическую решетку твердого тела. Это взаимодействие, которое принято называть гидратацией, может быть настолько сильным, что ослабленные связи атома металла со своими внешними (валентными) электронами нарушаются и атом металла получает возможность покинуть узел кристаллической решетки и перейти в воду. Так образуется ион-атом, несущий положительный заряд. Перешедший в раствор ион-атом гидратируется, т. е. окружается ориентирующимися вокруг него молекулами воды. При этом оставшиеся в металле электроны являются носителями отрицательного заряда. Таким образом,у поверхности металла образуется двойной электрический слой, характеризующийся разностью (скачком) потенциалов между поверхностью металла и слоем раствора, прилегающим к поверхности металла. При достижении определенной величины скачка потенциала дальнейший переход ион-атомов металла в раствор прекращается. Очевидно, что способность металла отдавать в раствор свои ион-ато-мы под воздействием силового поля молекул воды определяет различную величину скачка потенциалов в двойном электрическом слое. [c.29]

    При соприкосновении с водой поверхностные атомы твердого тела подвергаются воздействию силового поля молекул воды, которые благодаря своему малому размеру как бы внедряются в кристаллическую решетку твердого тела. Это взаимодействие, которое принято называть гидратацией, может быть настолько сильным, что ослабленные связи атома металла со своими внешними (валентными) электронами нарушаются и атом металла покидает узел кристаллической решетки и переходит в раствор. Так образуется ион-атом, несущий положительный заряд. Перешедший в раствор ион-атом гидратируется, т.е. окружается ориентированными вокруг него молекулами воды. Оставшиеся [c.27]

    Измерьте линейкой размеры заранее приготовленных в виде различных геометрических фигур (куб, цилиндр, конус, прямоугольник, шар и т. п.) образцов металлов — медь, цинк, железо, никель, алюминий и т. п. Вычислите объем каждого образца. Взвесьте его. Вычислите число молей металла и число атомов, содержащихся в образце. Рассчитайте объем, приходящийся на один атом и межъядерное расстояние в кристалле данного металла. [c.443]

    Количественной характеристикой окислительной способности атомов является величина энергии сродства к электрону, т. е. энергии, выделяющейся при присоединении электрона к нейтральному атому. Величина энергии сродства к электрону значительно меньше величины энергии ионизации тех же атомов. Обе эти величины изменяются в зависимости от изменения величины заряда ядра и размеров атома с увеличением заряда ядра они должны увеличиваться, а с увеличением радиуса атома уменьшаться. В связи с этим в каждом периоде наблюдается увеличение энергии ионизации от щелочных металлов к инертным элементам. В вертикальных же группах дело обстоит сложнее в главных подгруппах увеличение радиуса атомов сверху вниз перекрывает увеличение заряда ядер и потому энергия ионизации от верхних элементов к нижним уменьшается в побочных же подгруппах этого перекрывания не наблюдается и потому энергия ионизации изменяется не столь явно. Что касается энергии сродства к электрону, то она вообще изменяется симбатно с изменением энергии ионизации, но, поскольку величины энергии сродства к электрону малы по сравнению с величинами энергии ионизации, изменения первых бессмысленно наблюдать у элементов, расположенных в левой и нижней частях периодической системы кроме того, энергия сродства к электрону, увеличиваясь для элементов от четвертой до седьмой главных подгрупп, резко падает от седьмой к восьмой главной подгруппе. Изменение величины ионизационных потенциалов в зависимости от порядкового номера элемента графически показано на рис. 1.1. На рис. 1.2 приведена зависимость изменения радиусов атомов от порядкового номера. [c.34]

    Если атомы сплавляемых металлов значительно различаются между собой по размерам (атом металла А не превышает % размера атома металла Б), то меньшие по размеру атомы А способны внедряться в междоузлия решетки, образуемой более крупными атомами металла Б. Такие системы получили название твердых растворов внедрения. [c.314]

    Кроме смешанных кристаллов замещения, существуют смешанные кристаллы внедрения, когда атомы одного компонента внедряются в кристаллическую решетку другого, не изменяя ее структуры. Соотношение размеров атомов здесь имеет совершенно другое значение. Внедряющийся атом должен быть значительно меньше атома растворителя. Такого рода твердые растворы обычно образуются при растворении неметаллических атомов в металлах. Водород, азот, углерод, бор образуют твердые растворы с железом. [c.225]

    Разработаны новые методы приготовления катализаторов с кристаллитами размером порядка 10 см и ниже. Такие катализаторы обладают рядом своеобразных свойств, и удельная активность их зависит от размера кристаллов. На таких нанесенных катализаторах металл находится в виде агрегатов, или кластеров, содержащих 10—20 или больще атомов металла. Однако с уменьшением степени дисперсности соотношение Н/Ме приближается или равно 1 и, следовательно, каждый нанесенный атом металла доступен для хемосорбции водорода. [c.114]

    Сплавы титана с металлами. К числу наиболее существенных факторов, определяющих взаимодействие в металлических системах и поддающихся сценке, относятся соотношение размеров атомов, электронное строение и число валентных электронов, тип кристаллической структуры. Сходство ЕО взаимодействии титана, циркония и гафния с другими металлами обусловлено аналогичным строением их атомов, совпадением структур обеих полиморфных модификаций, а небольшое различие — тем, что атом титана имеет несколько мень- [c.237]


    Общими физическими свойствами, характеризующими металлы, обладают в свободном состоянии 82 элемента из 105. Естественно предположить, что атомы этих элементов должны быть сходными и по строению. Атомы элементов главных подгрупп I—III групп периодической системы на внешнем энергетическом уровне имеют мало электронов (от одного до трех) и, стремясь принять более устойчивое состояние (структуру атомов благородных газов), сравнительно легко отдают эти электроны, превращаясь в положительно заряженные ионы. Эта особенность обусловливает своеобразное строение кристаллической решетки металлов, которая состоит из положительных ионов и атомов, находящихся в узлах решетки. Между узлами находятся электроны, не принадлежащие каким-либо определенным атомам. Малые размеры электронов позволяют им более или менее свободно перемещаться по всему кристаллу металла, переходя от одного атома или иона к другому атому или иону. При достаточном сближении электронов с ионами образуются нейтральные атомы, которые снова распадаются на ионы и электроны. Следовательно, в кристалле металла существует своеобразное равновесие  [c.390]

    В плотно упакованных металлических структурах (разд. 6.2.2) между атомами металла имеются пустоты на каждый атом металла приходится две тетраэдрические пустоты. Их размеры достаточны для захвата атомов [c.378]

    Кроме того, заменой координируемого атома лиганда на донорный атом промежуточного типа, или созданием лиганда, который мог бы быть координирован катионом металла определенного размера, можно получить лиганд, селективный к катиону, находящемуся в середине ряда. Макроциклические полиэфи- [c.280]

    Важная особенность, позволяющая отнести элемент к категории металлов или неметаллов,— стремление образовать устойчивую внешнюю электронную конфигурацию у металлов — путем отдачи, а у неметаллов — за счет присоединения электронов другого атома. В группе при переходе к элементам больших периодов усиливается способность к отдаче электронов, а при движении вдоль периода — противоположная те тденция. Атомные радиусы закономерно изменяются по периоду. Самый большой атом — у щелочных металлов. Затем размер атома постепенно уменьшается. Возрастание заряда ядра при неизменности числа слоев электрон( в приводит к тому, что эффективный положительный заряд ядра, действующий на внешние электроны, возрастает и компенсируется электроном не полностью. Тогда у атома проявляется стремление к присоединению дополнительных электронов, так как в этом случае устойчивость отрицательного иона больше, чем атома. Особенно четко проявляется это в конце периода. Влияние противоположных тенденций приводит к сходству элементов по дпагоналн. Так, по мере все более полного и глубокого изучения свойств элементов явственней становится сходство химии лития и магния, бериллия и алюминия, бора и кремния и т. п. Такое сходство обусловлено тем, что увеличение энергии связи электронов с ядром при сдвиге вправо по периоду компенсируется ослаблением этой связи при переходе к нижерасположенному периоду. [c.173]

    N1, Ге, Со, Сг, Мп, 2п, Си, Hg, ЗЬ, Аз, галогены и многие другие элементы. Часть металлов входит в состав ВМС нефти в форме солей органических кислот и хелатных комплексов, в которых атом металла размещен в центре. порфинного макроцикла или в иных пустотах, могущих образовываться внутри крупных конденсированных ароматических систем однако основная масса металлов содержится в смолисто-асфальтовых веществах в виде сложных полидентатных комплексов [8], образование которых также способствует укрупнению макромолекул вплоть до коллоидных размеров. Многие из таких комплексов обладают сравнительно невысокой прочностью и легко обменивают содержащиеся в них атомы металлов на микроэлементы, присутствующие в растворителях или на поверхностях материалов, с которыми контактируют ВМС при их выделении или фракционировании [1008]. Это обусловливает значительные трудности определения истинного микроэлементного состава нативных нефтяных фракций и выявления закономерностей распределения микроэлементов в нефтях. [c.191]

    В этом случае два кислородных атома связывают каждый данный атом кремния с двумя другими атомами кремния два других атома кислорода н 1 каждый атом кремния связаны ионной связью с катионами металла и придаюг соответствующий, заряд аниону в целом. Такие цепочки могут достигать значительных размеров и должны рассматриваться как гигантские анионы. В крн- [c.133]

    С повыщением теплоты сублимации металла энергетический барьер, а следовательно, и энергия активации должны снижаться, что и наблюдается в действительности. Л. Г. Рабинович и В. Н. Можайко показали [196], что деалкилирование толуола в присутствии водяного пара катализируется металлами платиновой группы, причем наиболее активен алюмородиевый катализатор. Опыты проводили с катализаторами, содержацдами по 6 моль-атом металла на 1000 моль -АЬОз (размер частиц 1 мм) при мольном отношении Н20 С7Н8 = 6 и объемной скорости подачи сырья 1— 8 ч . Результаты опытов приведены ниже  [c.293]

    В настоящее время совершенно очевидно, что для активации водорода не требуется присутствия массивного металла, свойства которого связаны с наличием совокупности большого числа мeтaллич eoк иx атомов. Поэтому и1меющиеся сведения о катализаторах с дисперсностью молекулярных размеров, по-вндимому, применимы к атомам и ионам, находящимся на поверхности металлов или металлических окислов и сульфидов и образующим в одиночку или в виде небольших групп активные центры катализаторов. Одиако при этом необходимо учитывать, что на атом, находящийся на поверхности, должен оказывать свое влияние объем твердого тела, которое является частью его окружающей среды. [c.218]

    В связи с тем, что методы определения фактора устойчивости основаны на определении относительной оценки размеров асфаль-теновых частиц, а атом ванадия в ванадилпорфиринах, согласно [116], служит координационным центром в молекулах асфальтенов, наши положения о связи комплексообразующей способности исследуемых реагентов с ванадилпорфиринами нефтей и их влиянием на физико-химические свойства нефтей вполне правомерны. Анализ литературных данных также свидетельствует о существенном влиянии МПФ на структуру асфальтенов [84]. Ванадил-порфириновый комплекс соединяет листы — блоки конденсированных ароматических структур с атомами ванадия в азотной дырке . Поэтому, по предположительному структурно-молекулярному представлению, ванадил- и никельпорфирины не только являются составной частью молекул асфальтенов, но и выполняют связующую роль в процессе образования трехмерной структуры асфальтенов и двухмерных строительных блоков. Согласно [116], схематически можно представить соединения ванадилпорфирино-вого комплекса с конденсированными ароматическими блоками асфальтенов. Асфальтены можно, по-видимому, рассматривать как перекрестно связанные или ассоциированные конденсаты мульти-компонентных систем, включающих индивидуальные молекулы ароматических, порфириновых и нафтеновых циклов и гетероциклов. В благоприятных химических или физических условиях эти элементы соединяются мостиками или связями, образуя молекулы. Атомы таких металлов, как ванадий и никель могут участвовать и углеводородной или гетероциклической системе. [c.149]

    Координационное число иона металла часто зависит от относительных размеров самого иона металла и окружающих его лигандов. Чем крупнее лиганды, тем меньше их может координироваться вокруг иона металла. Это объясняет, почему железо способно координироваться шестью фторид-ионами в РеР и только четырьмя хлорид-ионами в РеС14. Лиганды, которые переносят на центральный атом металла значительный отрицательный заряд, также способствуют уменьшению координационного числа. Например, в комплексе Nl(NHз)й вокруг атома никеля(П) могут координироваться шесть нейтральных молекул аммиака, а в комплексе МСЦ вокруг такого же никеля(П) координируются лишь четыре отрицательно заряженных хлорид-иона. [c.372]

    Кристаллические решетки металлов имеют высокие координационные числа атомов (ионов), которые определяются числом ближайших соседей, окружающих данный атом (см. 9.1). Большинство металлов кристаллизуются в структурах плотнейших упаковок — гексагональной (Mg, Ве, d, Zn и др.) или гранецентрированной кубической (Си, Ag, Au, Al, Ni и др.). Такие структуры характерны для кристаллов, образованных сферическими частицами одинакового размера (рис. 5.11), координационное число для них равно 12, степень заполнения пространства составляет74%. Щелочные металлы, а также V, Сг, W и другие имеют кубическую объемно центрированную решетку, координационное число равно 8. Атомам металлов свойственны небольшие энергии ионизации, наименьшие для атомов щелочных металлов, и положительные степени окисления (см. 4.5). [c.121]

    Мы уже обсуждали (гл. 6) факторы, определяющие форму неорга нических молекул, составленных из атомов переходных элементов. Главным образом это — размер и заряд центрального иона, наличие свободной электронной пары, возможность расширения валентного уровня сверхоктета, являющегося предельным для элементов второго периода, способность к образованию л -связей. стерические требования к группам, связанным с центральным атомом, и, вероятно, важнее всего принцип запрета Паули. Если рассматривать центральный атом со сферической симметрией, характерной для комплексов металлов, не имеющих свободных электронных пар, следует ожидать, и это действительно обнаруживается, правильные формы. Молекулы с координационными числами 2, 3, 4, 5, 6, 7 и 8 характеризуются следующими структура, чи линейной, треугольной, правильной тетраэдрической, тригональной бипирамидой, октаэдрической, пятиугольной бипирамидой и квадратной (архимедовой) антипризмой. Можно сказать, что всякий раз, когда электронный уровень атома переходного элемента, не принимающий участия в связи, будет иметь сферическую симметрию, структура таких комплексов будет правильной, определяемой только координационным числом. Можно вы писать электронные конфигурации, которые приводят к правильным симметричным комплексам. Для наиболее распространенных координационных чисел 6 и 4 имеют место следующие конфигу рации  [c.282]

    По размерам атомов элемента можно косвенно судить об его окислительно-восстанбвительных свойствах, т. е. о том, является ли он металлом или неметаллом. Чем больше атом, тем ближе расположены к ядру электроны и тем их связь с ядром прочнее. Следовательно, такой элемент предпочтительнее будет проявлять окислительные свойства и являться неметаллом, так как небольшие размеры атомов соответствуют элементам концов периодов,- у которых заполнение орбиталей электронами близко к завершению. Ориентировочно можно считать, что элемент является неметаллом, если орбитальный радиус его атомов не превышает 0,1 нм. Связывая металличность свойств простого вещества со строением электронной оболочки его атомов, необходимо отметить, что у атомов металлов в наружном слое не бывает более четырех электронов (за исключением висмута), а у атомов неметаллов — менее пяти электронов (за исключением водорода, бора, углерода и кремния). [c.204]

    Фазы внедрения образуют обычно плотнейшие упаковки, гексагональную (ГПУ) и кубическую (ГЦК), для которых реализуются большие координационные числа. Такие структуры характерны для металлоподобных фаз. Состав фаз внедрения определяется не взаимным сродством компонентов, а геометрическими соображениями. В плотнейших упаковках существует два типа пустот тетраэдрические, окруженные четырьмя атомами, и октаэдрические — шестью. Количество октаэдрических пустот на одну элементарную ячейку равно количеству атомов в этой ячейке, а количество тетраэдрических пустот в два раза больше, т. е. на один атом плотнейшей упаковки приходится одна октаэдрическая и две тетраэдрические пустоты. Если внедряемые атомы занимают октаэдрические пустоты, то ожидаемый состав фазы внедрения будет отвечать формуле АВ, если же занимаются тетраэдрические пустоты — АВг (А — металл, В — неметалл) . Поскольку размер тетраэдрических пустот меньше, то фазы типа АВа могут образовываться только при внедрении малых атомов водорода. Действительно, существуют гидриды TIH2, 2гНг и т. д. Для карбидов, нитридов и боридов более ха))актерны фазы внедрения состава АВ (Ti , TaN, HfN, ZrB и т. п.), что указывает на внедрение атомов неметалла в октаэдрические пустоты .  [c.384]

    Изучение кинетики реакции показало, что в противоположность борогидридному восстановлению вхождение в анион алкоксигруппы уменьшает восстановительную способность алюмогидрида, и поэтому каждая последующая стадия передачи гидрид-иона проходит медленнее предыдущей, так что самой быстрой стадией оказывается первая. При этом передача гидрид-иона на каждой из стадий облегчается координацией карбонильного атома кислорода с катионом металла, которая поляризует карбонильную группу, вследствие чего глубина восстановления зависит от координирующих свойств катиона металла. Можно полагать, что катион лития из-за меньшего размера поляризует карбонильную группу больше, чем катион натрия, и поэтому гидрид-ион более легко переносится от алюминия к углеродному атому в случае Ь1А1Н4, чем КаА1Н4. Это вполне согласуется с их относительной реакционной способностью, отмеченной выше. [c.123]


Смотреть страницы где упоминается термин Металл атом, размер: [c.76]    [c.402]    [c.374]    [c.246]    [c.164]    [c.77]    [c.190]    [c.489]    [c.40]    [c.380]    [c.168]    [c.129]    [c.374]    [c.112]    [c.193]    [c.23]    [c.71]   
Основы общей химии Том 2 Издание 3 (1973) -- [ c.72 , c.474 ]




ПОИСК





Смотрите так же термины и статьи:

Атома размер размер

Металлы атомы



© 2024 chem21.info Реклама на сайте