Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

типы цветность

    Контрольно-измерительные приборы (КИП) применяются технологами для наблюдения за нормальным протеканием процессов обработки воды. Контроль и управление работой очистных сооружений осуществляют на основании показаний различных типов КИП, которыми оснащается технологический щит в помещении дежурного инженера. Эти приборы по принципу действия могут быть местными и дистанционными, показывающими или самопищущими и т. д. По контролируемым параметрам они подразделяются на приборы для измерения физических параметров среды (приборы количественного учета) и приборы для определения качественных показателей очистки воды и регулирования технологических процессов. К первым относятся приборы для контроля температуры, давления, расхода жидкостей и газов, измерения уровней жидкостей в резервуарах и сооружениях ко вторым — аппаратура для определения цветности, мутности, щелочности, pH воды, содержания в ней отдельных ингредиентов, отмеченных в нормах качества воды для хозяйственно-питьевого водоснабжения, а также приборы для контроля концентрации реагентов, дозы их в обрабатываемой воде, при- [c.174]


    Способы фиксирования точки эквивалентности в методе кислотно-основного титрования основаны на использовании резкого изменения pH вблизи точки эквивалентности. Определить точку эквивалентности можно двумя способами 1) визуально (индикаторный способ) и 2) инструментально (потенциометрическое, кондуктометрическое, спектрофотометрическое и другие виды титрования). При визуальном определении применяют кислотно-основные индикаторы, представляющие собой слабые органические кислоты (Hind) или основания (Ind), окраска которых изменяется при изменении pH среды. В соответствии с хромофорной теорией предложенной О. Виттом, цветность органических соеди нений, в частности кислотно-основных индикаторов, обуслов лена наличием в них ненасыщенных групп типа —N=N [c.227]

    Тип сточной воды Мембрана Давление, МПа (КГС/СМ2) Окисляемость, мг/л Цветность, градусы  [c.85]

    Электрофизиологический лгетод также используется при изучении проводящих нервных путей зрительного возбуждения за пределами рецепторного слоя. Регистрируются изменения электрического потенциала в тех случаях, когда вводятся микроэлектроды в сетчатку между рецепторами и ганглиозными клетками (рис. 1.3), а рецепторы стимулируются излучением различных длин волн. Однако спектральное распределение этих потенциалов, называемых -потенциалами, резко отличается от распределения рецепторных потенциалов. Обнаружено два типа -потенциалов [416, 470—472, 660]. Первый из них, названный L-потенциалом, отрицателен для всех спектральных стимулов, и, выраженный в функции длины волны, представляет собой сравнительно широкое спектральное распределение. Следует оговориться, что L-потенциалы определяются в условных единицах, поскольку значение этой L-величины, по-видимому, коррелирует со светимостью или яркостью стимула. Второй тип S-потенциалов условно измеряют в так называемых С-величинах, поскольку они коррелируют с ощущением цветности (сочетанием цветового тона и насыщенности) цветового стимула. Потенциалы, измеренные в С-величинах, могут принимать отрицательные или положительные значения в зависимости от длины волны стимула. Существует два вида С-величин (Л — ( ) и (У — В). Измерения величины В — G) дают положительный потенциал при длинноволновых (красных) стимулах и отрицательный при средневолновых (зеленых) стимулах. В результате спектральное распределение амплитуд потенциалов вначале отрицательно, а затем положительно (после пересечения спектральной оси) в области от 400 до 700 нм. Аналогичный характер имеет спектральное распределение амплитуд потенциалов, измеренных в (У — 5)-величинах, но оно отрицательно для всех длин волн в желтой области спектра и положительно — в синей области. Не удивительно, что эти результаты рассматриваются как очевидное доказательство в пользу существования механизмов кодирования цвета, причем в таком кодировании участвуют противоположные процессы. [c.117]

    Пожалуй, главная, наиболее фундаментальная задача не только органической химии, но и всей химической науки — это установление зависимости свойств вещества (физических, химических, биологических) как функции главного в химии аргумента — молекулярной структуры. Подобные функциональные зависимости в принципе невозможно установить на примере одного соединения. Чтобы изучить или хотя бы обнаружить функциональную зависимость, надо проварьировать аргумент, т.е. изучить серию соединений различной структуры. Изменения структуры органического соединения могут происходить только дискретно, скачками, и какими бы минимальными они ни были, они в той или иной мере сказываются на всем комплексе свойств вещества. Поэтому любое органическое соединение представляет собой неповторимую химическую индивидуальность с единственной конкретной структурой и единственным набором свойств. Именно поэтому закономерности типа структура — свойство могут быть выражены в количественном виде лишь для ограниченного круга задач и объектов (как, например, это удается сделать в гамметовских корреляциях свободной энергии или в рассмотренном выше случае оценки зависимости цветности азокрасителей от природы хромофоров). В большинстве же случаев эти закономерности носят чисто качественный характер, и в поиске вещества с заданными свойствами неизбежен эмпирический подход, который предполагает синтез и всестороннее исследование серий родственных соединений с планомерно варьируемыми свойствами.  [c.53]


    Тип сточной воды исходная вода фильт- рат цветности, 0/ /о исходная вода фильт- рат окисляемости, % мость, Л/(М2.Ч) [c.310]

    Заде [130] ввел понятие размытого множества, в котором членство некоторого элемента может описываться указанием любого значения от О до 1. Это было сделано с целью формализовать и дать количественное определение всевозможным видам нечетких и интуитивных утверждений типа хорошая цветность или теплый день . Рассматриваемый день может быть элементом множества жарких дней с членством 0,7 и множество холодных дней — с членством 0,1. Эти два значения членства не обязательно должны давать в сумме единицу. [c.252]

    Координаты цветности и светоотдача различных типов люминесцентных ламп с улучшенной цветопередачей [c.86]

    Итак, мы убедились, что линейному (или аффинному) преобразованию трехмерного цветового пространства соответствует проективное преобразование графика цветности. Справедливо также и обратное утверждение проективному преобразованию графика цветности соответствует аффинное преобразование трехмерного цветового пространства. Эти два типа преобразований весьма существенно отличаются один от другого типом искажений пространства или плоскости, соответственно с которыми может быть связано их существование. При проективном преобразовании [c.78]

    Основной целью многочисленных исследований эффективности очистки сточных вод целлюлозно-бумажной промышленности с помощью полупроницаемых мембран было получение необходимых данных для инженерных расчетоп установок очистки и концентрирования сильно разбавленных сточных вод. Оценка эффективности очистки различных типов сточных вод заключалась в определении химического потребления кислорода (ХПК), биохимического потребления кислорода (13ПК), окисляемости раствора, стенени удаления ионизированных солен п виде хлоридов из стоков после отбелки и сухого остатка с подразделением на органическую и минеральную части, значений pH в спектрофотометрическом определении оптической плотности или цветности в градусах платино-кобальтовой шкалы как меры концентрации лигнина. [c.309]

    Поляризационно-деформационные явления обусловливают цветность соединений и их термическую устойчивость. Малое поляризующее действие ионов щелочных и щелочноземельных металлов (тип 8 е) и малая деформируемость являются причиной их белого цвета и большой термической устойчивости. Оксиды же Ag20, HgO и др. (тип 18 е), наоборот, мало устойчивы к нагреванию, имеют окраску, но не взаимодействуют с водой, как первые, и т.д. Из-за взаимной поляризации ионов возникают индуцированные дипольные моменты и упрочняются связи между ионами. Этим, например, легко объясняется различие в свойствах Mg(OH) и 2п(0Н) 2, MgS и 2п5 и т. д. [c.103]

    Рис. 2.40, а показывает, что можно ожидать от фильтрового колориметра при последовательном расположении цветных стекол в корректирующих светофильтрах. Этот рисунок дает представление о качестве воспроизведения функций сложения МКО 1931 г. комбинациями корректирующий фильтр — фотоэлемент в одном из лучших приборов такого типа [556]. Совпадение достаточно хорошее, но не идеальное, что приводит к некоторым погрешностям измерений цветности и коэффициентов яркости несамосветящихся стимулов. В таком специально изготовленном колориметре погрешности в общем невелики и ими можно даже в большинстве практических ситуаций пренебречь. Однако это особый случай он не распространяется на серийные колориметры. В серийных приборах корректированная кривая чувствительности фотоэлемента может значительно отличаться от требуемых кривых сложения результаты измерения цветности и коэффициентов яркости обычно заметно расходятся с результатами расчета по спектральным данным. Погрешности в 0,020 по координатам цветности хж у и 1,5 по коэффициенту яркости Y при измерениях несамосветящихся стимулов со средней и высокой светлотой вполне возможны такие погрешности примерно в 10 раз больше допуска, приемлемого для большинства колориметрических измерений. [c.241]

    Кроме того, последовательности данного типа цветов составляют большую часть нашей повседневной практики, что вызывает дополнительный интерес к цветам постоянной цветности. Форма [c.284]

    В табл. 10 помимо общих сведений о роде источника, месте и времени отбора пробы приводятся данные о физических химических свойствах воды. Однако этих данных недостаточно для выбора рациональной схемы очистки воды, поскольку они не характеризуют ее технологических свойств. Так, величина цветности воды не позволяет составить представление об оптимальном способе устранения цветности и о потребной для этого дозе коагулянта.. Чтобы более надежно запроектировать отстойники, надо знать кинетику осаждения взвеси (осаждаемость взвеси). Знание способности Данной воды к фильтрованию позволяет более обоснованно подойти к выбору типа фильтров и т. д. [c.20]

    При дальнейшем рассмотрении рис. 2.82 открывается следующая закономерность главные оси эллипсов на периферии графика в основном имеют тенденцию указывать в направлении к центру. Чтобы на двумерном графике одинаково воспринимаемые различия по цветности представить линиями равной длины, необходимо сжать радиальные отрезки и растянуть периферийные. Это снова заставляет отказаться от плоскости, однако при куполообразной форме поверхности в центральной части радиальные расстояния увеличиваются по сравнению с периферийными, что совершенно противоположно требуемому типу поверхности, т. е. необходима поверхность не положительной, а отрицательной кривизны типа седлообразной поверхности. Это объясняет обнаруженную Мак Адамом волнистость по краям двумерной поверхности, представляющей распределение цветности в соответствии с наблюдениями. [c.347]

    В качестве такого временного критерия МКО предварительно было рекомендовано использовать равноконтрастный цветовой график, первоначально предложенный Мак Адамом [397]. Этот график известен как равноконтрастный цветовой график МКО 1960 г. и довольно подробно был рассмотрен выше (рис. 2.76). Среди нескольких подобных графиков был выбран именно данный благодаря простоте преобразования из цветового графика х, у) МКО 1931 г. и наличию ясных указаний на то, что он является хорошим представителем равноконтрастных цветовых графиков такого типа. Его рекомендуют использовать всякий раз, когда тре-требуется цветовой график с более близким к равноконтрастному распределению цветности, чем у графика х, у) МКО. [c.364]

    Автоматический анализатор мутности и цветности типа АМЦ (см. рис. 24, й) предназначен для непрерывного независимого измерения и дистанционной регистрации мутности и цветности питьевой воды. Принцип действия, как и в предыдущем приборе, основан на использовании компенсационной измерительной схемы. Управляют положением оптических клиньев мутность и цветность воды два самостоятельные электромеханизма отработки, которые периодически связываются через общий электронный усилитель с соответствующими фотоэлектронными [c.190]

    Пробы воды смешивают десятикратным опрокидыванием колб или цилиндров и сразу фильтруют через промытые бумажные фильтры типа белая лента . В фильтрате определяют взвещенные вещества и цветность (см. стр. 25 и 28). [c.249]

    А.к. дают окраски желтых, красных, фиолетовых, синпх и зеленых тонов. Цвет зависит от числа и типа ароматич. остатков и характера заместителей в них. Наличие заместителей в орто-положении к центр, атому углерода приводит к повышению цвета (см. Цветность органических соединений). [c.195]


    В люминесцентных лампах высокого давления с исправленной цветностью (рис. IV.6) УФ-излучение ртутного разряда горелки трансформируется в видимый свет при помощи люминофора, нанесенного на внутреннюю поверхность колбы, внутри которой находится горелка лампы. Поскольку доля энергии, излучаэмая горелкой в УФ-области, невелика в сравнении с долей энергии, излучаемой в видимой области спектра, люминофорное покрытие не дает существенного повышения светоотдачи в данном типе ламп. Его роль сводится в основном к тому, чтобы исправить цветность ламп, дополняя спектр [c.78]

    Тип лампы Цветовая температура, К Координаты цветности Светоотдача лампы мощностью 40 Вт через 100 ч, лм/Вт Компоненты люминесциру-ющего покрытия [c.86]

    Качество ПВС и сополимеров ВС и ВА, получаемых щелочным или кислотным алкоголизом ПВА, во многом зависит от при--месей, находящихся в реакционной среде, а также от примесных структур в исходном ПВА. В процессе алкоголиза ПВА, содержащего непрореагировавший ВА, в результате омыления пооледнего образуется ацетальдегид [см. реакцию. (4.6)], претерпевающий ряд дальнейших превращений с образованием непредельных альдегидов. Последние в присутствии щелочи образуют продукты альдольной конденсации типа СНз(СН=СН) — "СНО, где п = = 1- 3. Сорбируясь на ПВС, эти соединения способны ингибировать эмульсионную полимеризацию ВА при использовании ПВС в качестве защитного коллоида, ухудшают цветность и термостабильность ПВС и поливинилацеталей [87]. [c.88]

    В эксперименте, проиллюстрированном на рис. 1.12, мы можем изменить тип восприятия цвета поля зрения, освещая переднюю поверхность редуцирующего зкрана (теперь уже белого) от источника, расположенного сбоку от наблюдателя. Такое расположение обеспечивает падение излучения этого источника на ту часть белого зкрана, которая не видна наблюдателю сквозь отверстие в редуцирующем экране, и наоборот — гарантирует, что оно не будет освещать поле зрения. Когда яркость редуцирующего экрана сравняется с яркостью излучения, наблюдаемого через отверстие, тип цветовосприятия меняется. Мы воспринимаем цвета, видимые через отверстия, уже не как цвета излучения (именуемые также цветами, не локализованными по глубине, или цветами в отверстии), а как цвета несамосветящихся объектов. При этом изменении типа цветовосприятия нам кажется, что отверстие исчезло, и на его месте мы видим два плоских окрашенных полукруга, воспринимаемых, как цветная бумага, наклеенная на редуцирующий экран. При этом мы можем заметить резкие изменения в яркости и цветности (цветовом тоне и насыщенности) цветов. Например, если при темном редуцирующем экране мы воспринимали через отверстие достаточно насыщенный оранжевый цвет, то при ярко освещенном редуцирующем зкране, когда тип нашего цветовосприятия меняется, мы видим тот же участок поля зрения окрашенным в цвет, который можно было бы описать как темно-коричневый. Любопытно, что коричневый цвет можно уви- [c.64]

    Равноконтрастный цветовой график МКО 1960 г. и все другие проективные преобразования цветового графика МКО 1931 г. предназначены для прогнозирования воспринимаемых различий в цветности между парами равносветлотных стимулов. Как было показано выше, с помощью таких графиков это можно сделать только приблизительно. Другие нелинейные преобразования цветовых графиков х, у) МКО 1931 г., приводяпще к криволинейным равноконтрастным цветовым графикам, в основном лучше проективных преобразований, однако менее удобны в работе, в то же время оба типа равноконтрастных цветовых графиков применимы только к стимулам с равной светлотой и относительно высоким уровнем яркости, рассматриваемым в полях зрения не менее 1°. [c.352]

    Лучшими для обесцвечивания соков и сиропов сахарного производства оказались четвертичноаммониевые аниониты, снижающие цветность сиропов на 85—100% l8j. Из отечественных смол, выпускаемых нашей промышленностью, наиболее эффективны по сорбции красящих веществ аниониты конденсационного типа на основе полиэтиленполиаминов, [c.180]

    С целью повышения качества ДФП для применения его в производстве поликарбонатов были проведены работы по усовершенствованию технологии перекристаллизации ДФП. Известна технология перекристаллизации из растворителей двух типов образующих и необразующих кристаллические ад-дукты с ДФП. В случае использования в качестве растворителя фенола, ДФП выпадает из раствора в виде аддукта (состав аддукта 70,81% дифенилолпропана, 29,19% фенола). Кристаллы аддукта плавят при 100°С, в вакуумных колоннах отгоняют фенол, а затем гранулируют ДФП. При этом, вследствие высокой растворимости ДФП в феноле, выход дифенилолпропана составляет 60%. Для повышения его выхода на этой стадии (до 94—95%) проводят его кристаллизацию из маточного раствора, который затем направляют на рециркуляцию, что усложняет технологию. При перекристаллизации ДФП из растворителей типа хлорбензола выход ДФП достигает 94% и поэтому не требуется извлекать его из маточного раствора кристаллизацией. Однако в этом случае ДФП не образует с растворителем кристаллических аддуктов, плавится при высокой температуре (160—170°С) и, чтобы не ухудшать цветности продукта, его не плавят, а сушат и выпускают в виде порошка, что осложняет хранение и перевозку продукта по сравнению с гранулированным ДФП. [c.207]

    При разделении гумусовых веществ применялось сочетание двух методов жидкостной хроматографии — фронтального (намыв колонки при фильтровании природной воды) и элювиального методов анализа (размыв колонки 0,01-н. раствором бикарбоната натрия, pH 8,4). В пробах определялись цветность, окисляемость (перманганатная, бихроматная) и оптическая плотность на упрощенном спектрофотометре. Качественными исследованиями фильтрата, прошедшего через слой карбоната кальция, установлено, что при фронтальном анализе вначале сорбируются из воды практически все окрашенные органические вещества. Затем в результате увеличения количества адсорбированных веществ типа гуминовых и апокреновых кислот соединения типа креповых кислот постепенно вытесняются из колонки. При элюировании вследствие изменения pH среды в раствор переходят апокреновые кислоты. Это подтверждается данными отношения перманганатной и бихроматной окисляемости растворов гумусовых веществ. Величина этого отношения для апокреновых кислот, выделенных химическим путем (см. стр. 44, 45), значительно выше, чем для креновых. Соответствующие результаты получены также ири исследовании (1958 г.) фракций фронтального и элювиального хроматографического анализов водного гумуса (табл. 12). Гуминовые кислоты в ходе анализа из колонки не вымывались, и для перевода их в раствор адсорбент растворяли в соляной кислоте с последующей обработкой осадка 0,01-н. едким натром (pH 12). [c.59]

    Автоматический анализатор мутности типа АМС-У (см. рис. 12, а) предназначен для непрерывного или автоматического контроля и дистанционной регистрации мутности очищенной питьевой воды. Принцип действия основан на частом периодическом сравнении при помощи модулятора двух световых потоков, проходящих через кювету с контролируемой водой и измерительный оптический клин. Исполнительный механизм, управляемый измерительной системой, регулирует положение оптического клина, соответствующее сохранению равенства световых потоков, падающих на фотоэлемент. Измерение мутности воды проводят в длинноволновом участке видимого спектра (Я=700 800 нм), где цветность воды не влияет заметно на показания приборов. Стрелка, установленная на одном валу с оптическим клином, указывает мутность мг/л), дистанционная передача показаний производится с помощью реостатного задатчика, входящего в комплект вторичного самопишущего прибора (мост типа ЭМД). Диапазон измерений О—4,5 мг1л. [c.190]

    Фотоэлектронная установка для контроля промывки фильтров (индекс АОВ-7) работает на принципе ослабления светового потока в слое воды, содержащей взвешенные вещества. Поглощение света фиксируется фотоэлементом, соединенным с показывающим электроизмерительным прибором типа МРЩПр. Применение простой фототурбидиметрической методики для измерения прозрачности воды в данном случае допустимо, так как фильтры всегда промывают очищенной водой с небольшой, практически постоянной, цветностью воды. Первичный датчик состоит из проточной кюветы, герметической камеры для фотоэлемента, камеры с электрической лампочкой и электромагнита с волосяными щеточками, которыми периодически протирают окошко кюветы. Вторичный прибор, показывающий типа МРЩПр или ЭПВ. Позиционные регуляторы их используются для прекращения промывки фильтров при достижении заданной прозрачности воды. [c.193]

    Для качественной характеристики окрашенных органических примесей природных вод используют различного рода расчетные критерии, в частности легко определяемый коэ ициент цветности — отношение цветности в градусах условной шкалы к окисляемости в миллиграммах кислорода на 1 л воды. Увеличение или уменьшение отношения ПО/БО свидетельствует об относительном возрастании содержания в воде соответственно гумусовых веществ или веществ негумусового происхождения в общем количестве органических соединений. Отношение БПКб к кислороду окисляемости указывает на биохимическую устойчивость гумусовых веществ и других органических соединений. Перспективна также качественная характеристика органических примесей воды по численному значению отношений g, /N, С/Р и др. Установлено, что для цветных вод болотного типа Оокксл/ орг. в больше единицы, а для вод, богатых органическими веществами планктонного происхождения, — меньше единицы. [c.164]

    Из всех приборов для контроля качества воды только рН-метры со стеклянными электродами имеют общепромышленное значение и изготовляются приборостроительными заводами в больших количествах. Для станций обработки воды наиболее пригодны рН-метры с проточными (типа ДМ-5М) и погруженными (типа ДПг-4М) датчиками, работающими в комплекте с высокоомным преобразователем типа рН-261 или П-201. Они используются для измерения pH воды, а также для контроля процессов подщелачивания, стабилизации, умягчения и др. Принцип действия их основан на измерении ЭДС гальванической пары, образованной индикаторным стеклянным электродом, потенциал которого изменяется с изменением pH среды, и стандартным каломельным или хлорсеребряным электродом с постоянным потенциалом. Вторичным регистрирующим прибором является электронный потенциометр, градуированный в единицах pH. В лабораторных условиях используются рН-метры типа ЛПУ-01, рН-101, рН-121, рН-262, рН-340. Для выполнения колориметрических анализов (измерение мутности, цветности, содержания железа, нитратов, нитритов и др.) в лабораториях применяются также общеаналитические приборы — фотоэлектроколориметры типа ФЭК-56, ФЭКН-57 и ФЭК-60. Содержание щелочных металлов определяют с помощью пламенного фотометра ФПЛ-1 или ПАЖ-1. [c.830]

    Активный уголь — эффективное средство извлечения растворенных органических соединений, не полностью удаленных при обычной биологической очистке и обусловливающих БПК, ХПК, цветность, а также привкусы и запахи сточных вод. Активный уголь извлекает органические вещества путем адсорбции и биораапада. Находящиеся в растворе молекулы улавливаются пористой поверхностью гранулированного угля, в то время как другие материалы задерживаются в результате осаждения и биологической ассимиляции. Теоретически извлечение органических веществ происходит главным образом в результате адсорбции, тогда как биологическая активность способствует регенерации адсорбирующей поверхности путем повторного открытия пор активного угля. Хотя на начальной стадии эксплуатации угольной колонны доминирующую роль играет адсорбция, тем не менее значение биологической активности в процессе извлечения растворенных органических веществ также весьма существенно. Следовательно, токсичные вещества, тормозящие микробиальную активность, могут уменьшить эффективность работы установки. Сточные воды с высоким pH, получаемые после первичного химического осветления, должны быть нейтрализованы перед фильтрованием в угольных адсорберах. Так как механизм доочистки активным углем полностью не выяснен, то перед обработкой каждого данного типа сточных вод необходимо проводить экспериментальные исследования. [c.375]


Смотреть страницы где упоминается термин типы цветность: [c.313]    [c.1201]    [c.53]    [c.52]    [c.380]    [c.225]    [c.36]    [c.36]    [c.36]    [c.256]    [c.256]    [c.164]    [c.337]    [c.379]    [c.66]    [c.190]    [c.52]    [c.234]   
Основы общей химии Том 2 Издание 3 (1973) -- [ c.192 ]




ПОИСК







© 2025 chem21.info Реклама на сайте