Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Щелочные металлы атом, ионизация

    В отношении электростатической теории это было сделано В. Косселем и М. Борном. В основу было положено представление о стремлении атомов при реакциях принимать электронную структуру ближайшего благородного газа. Атом натрия может выполнить это, отдав один электрон. Возникающий таким образом ион Ма+ имеет все электронные оболочки неона. Атом фтора для того, чтобы превратиться в ион с электронной структурой неона, должен, наоборот, получить электрон, образуя ион Р . Таким образом, при встрече атомов натрия и фтора электрон должен перейти от натрия к фтору, после чего возникшие ионы Ыа+ и притягиваются друг к другу благодаря кулоновскому притяжению. С энергетической точки зрения такой переход электрона объясняется тем, что у атомов щелочных металлов потенциал ионизации мал, а у галогенов имеется сродство к электрону. Эти обстоятельства и выражают указанные тенденции атомов получать электронную оболочку ближайшего благородного газа. Для атомов натрия и хлора сомнений в том, в какие ионы превращаются атомы, нет. Однако в общем случае решение этого вопроса может быть не столь простым. Так, неясно априори, какой из атомов передает свой электрон другому для пары атомов — литий или водород. Решение этого вопроса в общем виде принадлежит Л. Полингу. Его рассуждения сводятся к следующему. [c.322]


    Количественной характеристикой окислительной способности атомов является величина энергии сродства к электрону, т. е. энергии, выделяющейся при присоединении электрона к нейтральному атому. Величина энергии сродства к электрону значительно меньше величины энергии ионизации тех же атомов. Обе эти величины изменяются в зависимости от изменения величины заряда ядра и размеров атома с увеличением заряда ядра они должны увеличиваться, а с увеличением радиуса атома уменьшаться. В связи с этим в каждом периоде наблюдается увеличение энергии ионизации от щелочных металлов к инертным элементам. В вертикальных же группах дело обстоит сложнее в главных подгруппах увеличение радиуса атомов сверху вниз перекрывает увеличение заряда ядер и потому энергия ионизации от верхних элементов к нижним уменьшается в побочных же подгруппах этого перекрывания не наблюдается и потому энергия ионизации изменяется не столь явно. Что касается энергии сродства к электрону, то она вообще изменяется симбатно с изменением энергии ионизации, но, поскольку величины энергии сродства к электрону малы по сравнению с величинами энергии ионизации, изменения первых бессмысленно наблюдать у элементов, расположенных в левой и нижней частях периодической системы кроме того, энергия сродства к электрону, увеличиваясь для элементов от четвертой до седьмой главных подгрупп, резко падает от седьмой к восьмой главной подгруппе. Изменение величины ионизационных потенциалов в зависимости от порядкового номера элемента графически показано на рис. 1.1. На рис. 1.2 приведена зависимость изменения радиусов атомов от порядкового номера. [c.34]

    Энергия, необходимая для отрыва одного электрона от атома, называется первым потенциалом ионизации. Если атом имеет несколько электронов, то он соответственно характеризуется несколькими потенциалами ионизации — вторым потенциалом, т. е. энергией, необходимой для отрыва второго электрона от однозарядного иона, третьим — энергией, необходимой для отрыва электрона от двухзарядного иона, и т.д. Каждый последующий потенциал всегда больше предыдущего, так как по мере увеличения положительного заряда атомного остова он все более прочно удерживает остающиеся электроны в результате усиления кулоновского притяжения. Например, для алюминия первые три потенциала ионизации равны соответственно 6,0 18,8 и 28,4 эВ. Зависимость первых потенциалов ионизации от положения элемента в периодической системе приведена на рис. 13. Видно, что наблюдается отчетливая периодичность в изменении потенциалов ионизации, причем максимумы соответствуют инертным газам, имеющим заполненные электронные оболочки, а минимум — щелочным металлам, имеющим единственный электрон вне конфигурации инертного газа. [c.48]

    Единственный электрон расположен очень близко от ядра (расстояние между ними всего 0,5 А) и прочно удерживается— потенциал ионизации водорода 13,6 эв. Поэтому и по химическим свойствам он не похож на легко отдающие свой внешний электрон щелочные металлы. Кроме того, атому водорода достаточно присоединить еще один электрон, чтобы получить устойчивую оболочку 15 , такую же как у гелия, что делает его похожим на типичные металлоиды. [c.43]

    Галогены отличаются самым высоким сродством к электрону, так как при присоединении одного электрона к нейтральному атому они приобретают законченную электронную конфигурацию благородного газа. Щелочные металлы характеризуются низким сродством к электрону. Для решения вопроса о том, какой из атомов легче отдает или присоединяет электрон, учитывают оба показателя энергию ионизации и сродство к электрону. Согласно Малликену, полусумма энергии ионизации и сродства к электрону называется электроотрицательностью (ЭО). [c.27]


    Чтобы вычислить Ig ki= g p-ri щелочных металлов, нужно брать первый потенциал ионизации, щелочноземельных металлов — второй потенциал ионизации, металлов, образующих полуторные окислы,— третий потенциал ионизации и т. д. (табл. 8). У элементов с переменной валентностью берем соответственно разные потенциалы ионизации. Например, у титана получаем две константы одну для Ti (IV), другую для Ti (П1), у железа одну для Fe (HI), другую — для Fe (II). Для галогенов, аналогов кислорода, азота, образующих отрицательно заряженные ионы, нужно брать вместо потенциала ионизации сродство электрона к атому. [c.25]

    Спектры и потенциалы ионизации (ПИ) атомов щелочных металлов (элементов группы 1А в периодической системе) удается довольно хорошо аппроксимировать в рамках теории Бора, если заменить п эффективным квантовым числом п = п—с1), где с1 — так называемый квантовый дефект. Исходя из значения первого потенциала ионизации, вычислите квантовый дефект для 5-электрона и энергию перехода ( +1)5-<-я5 в атомах и (п = 2 ПИ = 5,363 эВ) и Ка = 3 ПИ = 5,137 эВ). Используйте для постоянной Ридберга значение, соответствующее атому водорода (т. е. предположите, что электроны внутренних оболочек полностью экранируют ядро), (Экспериментальное значение для энергии указанного перехода в атоме Ка составляет 25 730 см . ) [c.26]

    Ионизационный потенциал характеризует энергию связи электрона в атоме. Периодичность хорошо наблюдается на примере изменения потенциала ионизации первого электрона в зависимости от порядкового номера элемента. Резкие максимумы наблюдаются у атомов инертных газов, обладающих наиболее устойчивой конфигурацией. В минимумах кривой находятся щелочные металлы. В пределах одного периода потенциал ионизации изменяется не монотонно. На кривой наблюдаются вторичные максимумы, менее резко выраженные, соответствующие заполнению -оболочки у элементов II группы — Ве Mg, 2п, Сд и Н . Следующие максимумы наблюдаются у элементов V группы — М, Р, Аз, что соответствует энергетически выгодному половинному заполнению р-оболочки, содержащей три неспаренных электрона. В пределах одной группы с увеличением порядкового номера величина потенциала ионизации в общем убывает, что связано с увеличением расстояния от ядра внешней электронной оболочки. Периодически изменяется и сродство к электрону, выражающее работу присоединения электрона к нейтральному атому. [c.7]

    Анализ экспериментальных данных показывает, что в случае щелочно-галоидных фосфоров, активированных серебром, отдельные спектральные полосы, например 288 тр, у КС1—Ag, обусловлены центрами, представляющими собой своеобразные f-центры, в которых один из шести катионов, смежных с вакантным узлом иона галоида, является ионом серебра [246, 279]. Иными словами, галоидная вакансия и расположенный с нею рядом примесный ион действуют в качестве единой ловушки электронов. Если учесть, что энергия ионизации атомов серебра (7,54 эв.) больше, чем у атомов щелочного металла (для натрия и калия соответственно 5,12 и 4,34 эв.), то естественно ожидать, что энергия связи электрона в Л-центре будет больше, чем в обычном f-центре. Это действительно имеет место, так как полоса поглощения Л-центров значительно смещена относительно f-полосы в коротковолновую область спектра. Если кроме указанного учесть также, что отношение атомных радиусов к ионным для серебра значительно меньше, чем для щелочных металлов, то можно заключить, что электрон в Л-центре будет теснее связан с ионом серебра, чем с каждым ионом щелочного металла в отдельности. Указанные факты, однако, не позволяют отождествить Л-центр с атомом серебра, так как полная энергия связи электрона в Л-центре определяется его энергией взаимодействия не только с ионом серебра, но и с вакантным узлом иона галоида и пятью смежными катионами щелочного металла. Иными словами, Л-центр, или атомарный центр серебра, представляет собой квазинейтральный атом серебра, расположенный по соседству с галоидной вакансией. Такая интерпретация Л-полосы основана на следующих экспериментальных данных. [c.168]

    В табл. 5.12 приведены данные для однократно ионизованных атомов, т. е. атомов, потерявших один электрон. Потенциалы ионизации, соответствующие двух- и трехкратно ионизованным атомам, естественно, большие величины, так как на отрыв электрона от положительно заряженного иона требуется больше энергии, чем на отрыв от нейтр льного атома. Значение потенциала ионизации зависит от величины радиуса атома (табл. 5.13). Чем меньше атомы или чем ближе к ядру расположены валентные электроны, тем труднее их оторвать. Например, в группе щелочных металлов наименьшее значение потенциала ионизации имеет наиболее крупный атом цезия, а наибольшее значение — самый маленький атом лития. [c.153]

    В основном состоянии атом Ф. обладает конфигурацией внешней электронной оболочки 7 s. Энергии ионизации (в эв) Fr°— Fr - Fr 4,0 и 21,5 соответственно. Ф. является самым электроположительным из всех существующих в природе элементов. Единственной устойчивой степенью окисления его является - -1 известен оптич. спектр Fr , к-рый состоит из широкого дублета в красной и тесного дублета в фиолетовой области спектра. Энтальпия образования газообразного иона Ф. 106,8 ккал моль. На основании теоретич. данных рассчитаны термодинамич. характеристики большого числа соединений Ф. В химич. отношении Ф.— самый ближайший аналог цезия, т. с. все характерные для s химич. формы должны существовать и у Ф. Будучи аналогом s и др. щелочных металлов, Ф. способен давать лишь сравнительно небольшое число труднорастворимых соединений. Основные данные по химич. свойствам Ф. получены на основании результатов по соосаждению. [c.281]

    Ионы щелочных металлов с зарядом +1 (Ы+, Ыа+, К+, КЬ+...) имеют устойчивую электронную оболочку, как в атомах инертных газов, а следовательно, и очень высокую энергию ионизации и возбуждения. По сложности и структуре спектр иона щелочного металла аналогичен спектру соответствующего инертного газа (с тем же числом электронов), но все линии в спектре иона смещены в коротковолновую область. Например, ион натрия цКа+ 8 -2з р имеет точно такое же строение электронных оболочек, как и атом неона юМе Поэтому их уровни имеют одинаковую струк- [c.40]

    КАЛИЙ (от араб, аль-кали - поташ лат. Kalium) К, хим. элемент I гр. периодич. системы относится к щелочным металлам, ат. и. 19 ат. м. 39,0983. Состоит из двух стабильных изотопов К (93,259%) и К (6,729%), а также радиоактивного изотопа К 1,32-10 лет). Поперечное сечение захвата тепловых нейтронов для прир. смеси изотопов 1,97-10 м . Конфигурация внеш. электронной оболочки 4i степень окисления + 1 энергия ионизации К - соотв. 4,34070 эВ и 31,8196 эВ сродство к электрону 0,47 эВ злектроотрицательность по Полингу 0,8 атомный радиус 0,2313 нм, ионный радиус (в скобках указано координац. число) К 0,151 нм (4), 0,152 нм (6), 0,160 нм (7), 0,165 нм (8), 0,178 нм (12). [c.284]

    Кристаллические решетки металлов имеют высокие координационные числа атомов (ионов), которые определяются числом ближайших соседей, окружающих данный атом (см. 9.1). Большинство металлов кристаллизуются в структурах плотнейших упаковок — гексагональной (Mg, Ве, d, Zn и др.) или гранецентрированной кубической (Си, Ag, Au, Al, Ni и др.). Такие структуры характерны для кристаллов, образованных сферическими частицами одинакового размера (рис. 5.11), координационное число для них равно 12, степень заполнения пространства составляет74%. Щелочные металлы, а также V, Сг, W и другие имеют кубическую объемно центрированную решетку, координационное число равно 8. Атомам металлов свойственны небольшие энергии ионизации, наименьшие для атомов щелочных металлов, и положительные степени окисления (см. 4.5). [c.121]


    Из приведенных данных видно, что по величине энергии ионизации водород стоит шачительно ближе к фтору, чем к литию, и никакие металлические свойства свободному атому водорода, следовательно, не присущи. Точно так же положительно заряженный ион водорода не имеет ничего общего со свойствами ионов щелочных металлов, поскольку является элементарной частицей — протоном. Вместе с тем в электрохимическом ряду напряжений водород ведет себя как металл. Это объясняется тем, что электрохимический ряд напряжений служит характеристикой атомов металлов в водных растворах (см. гл. V, 11). При ионизации атома водорода в присутствии воды образуется ион гидроксония Н3О+, что сопровождается выделением энергии. Вследствие этого энергия ионизации атома водорода в водном растворе резко снижается и становится близкой к величине энергии ионизации атомов металлов. Заметим, что по некоторым физическим свойствам ион Н3О+ в растворе ведет себя подобно катионам щелочных металлов. Однако эти особенности не относятся к атому или иону водорода и не дают оснований рассматривать его как металл. Сходство строения внешней электронной оболочки атома водорода с внешними электронными оболочками атомов щелочных металлов носит, следовательно, такой же формальный характер, как и однотипность строения внешних электронных оболочек атома гелия и атомов элементов II группы. [c.160]

    Самопроизвольная передача электрона от металлического атома к атому неметалла в действительности вряд ли осуществляется.. Дело в том, что потенциал ионизации первого порядка даже для наиболее активных щелочных металлов больше, чем сродство к электрону типических электроотрицательных элементов. С эгой точки зрения оказывается энергетически невыгодным образование молекулы Na l из элементов, так как первый ионизационный потенциал натрия равен 5,14 В, а сродство к электрону атом хлора — [c.85]

    Для щелочноземельных металлов II группы потеря двух внешних электронов соответствует более устойчивой конфигурации соседнего инертного газа. Как видно из табл. 6, первый потенциал ионизации этих элементов выше, чем для щелочных металлов, а второй потенциал ионизации еще больше. В общем случае образование двухвалентных положительных ионов, следовательно, происходит [ с большим трудом, чем одновалентных положительных ионов. При потере двух электронов атом магния становится катионом М 2+, атом кальция — катионом Са2+ и т. д. Например, имеем [c.50]

    Самопроизвольная передача электрона от металлического атома к атому неметалла в действительности вряд ли осуществляется. Дело в том, что потенциал ионизации первого порядка даже для наиболее активных щелочных металлов больше, чем сродство к электрону типичных электроотрицательных элементов. С этой точки зрения оказывается энергетически невыгодным образование ионной молекулы Na l из элементов, так как первый ионизационный потенциал натрия равен 5,14 В, а сродство к электрону атома хлора — 3,7 эВ (ионизационный потенциал, выраженный в вольтах, численно равен энергии ионизации в электрон-вольтах). Из квантовой механики также следусзт, что полное разделение зарядов с возникновением идеальной ионной связи Ai B никогда не может осуществиться, так как из-за волновых свойств электрона вероятность его нахождения вблизи ядра атома А может быть мала, но отлична от нуля. [c.64]

    РУБЙДИЙ (от лат. rubidus-красный rubidium) Rb, хим. элемент I гр. периодич. системы, ат. н. 37, ат, м. 85,4678 относится к щелочным металлам. В природе встречается в виде смеси стаб. изотопа Rb (72,15%) и радиоактивного Rb (27,85% 4,8-10 лет, Р-излучатель). Поперечное сечение захвата тепловых нейтронов для прир. смеси 0,73 10 м . Конфигурация внеш. электронной оболочки атома 5s степень окисления -fl энергии ионизации Rb° - Rb" - Rb 4,17719 эВ, 27,5 эВ сродство к электрону 0,49 эВ электроотрицательность по Полингу 0,8 работа выхода электрона 2,16 эВ металлич. радиус 0,248 нм, ковалентный радиус 0,216 нм, ионный радиус Rb 0,166 нм (координац. число 6), 0,186 нм (12). [c.282]

    Химия водорода во многом отличается от химии других элементов, что обусловлено одноэлектронностью ато ма и отсутствием промежуточных электронных слоев По ряду свойств водород похож на щелочные металлы, но в большей степени проявляет сходство с галогенами Признаки, общие у водорода и галогенов близкие значения энергий ионизации, двухатомность и ковалентность связи молекул На и Гг, отсутствие электрической проводимости, полярность связей в большинстве соединений, сходство галогенидов и гидридов активных металлов, закономерное изменение свойств в ряду Н— [c.371]

    От потенциала ионизации во многом зависят восстановительные свойства атомов, характер и прочность об-разумых ими химических связей. Чем меньше ПИ, тем легче атом отдаст электрон не только при электронном ударе, но и при взаимодействии с другими атомами, т. е., выражаясь химическим языком, тем больше его восстановительная способность. При связи с одним и тем же атомом-партнером атом с меньшим значением ПИ легче расстанется с электроном и поэтому у него тенденция к образованию центра положительного электричества или даже катиона будет проявлена больше. Наилучшими восстановительными свойствами обладают щелочные металлы IA подгруппы, начиная с s и кончая Li, а затем идут щелочно-земельные элементы ПА подгруппы, начиная с Ва и кончая Са, и т. д. (рис. 10, табл. 3). Пилообразность кривых внутри периодов может быть объяснена относительной устойчивостью некотрых электронных структур ras , гар , rad , ra< , nf, га/ (см. раздел 4.4). Но, конечно, максимальной устойчивостью обладают структуры инерт-газов Is у Не и у остальных. Потенциалы ионизации /а, /з,..., существенно увеличиваются в этой последовательности, причем особенно резко при ПИ, индекс которых больше номера группы /2 для Li, I3 для Ве, /4 для В и т. д. (эти значения в табл. 3 выделены рамкой). Это говорит о практической невоз- [c.114]

    Щелочным металлом начинается каждый новый период. По сравнению с другими элементами у Щ. м. самые низкие энергии ионизации, а радиусы атомов и ионов наибольшие. С увеличением радиусов атомов от лития к францию уменьшаются ионизационный потенциал и энергия сродства к электрону следовательно, легкость отдачи электрона увеличивается. Таким образом, восстановительная способность Щ. м. увеличивается сверху вниз. От лития к францию число электронных оболочек возрастает от 2 до 7. Атом лития отличается от остальных Щ. м. тем, что его предвнешний уровень заселен двумя элек- [c.356]

    Интересно влия11ие добавок галогенов на ионизацию в пламени щелочных металлов. Оказалось, что малая добавка хлора [0,1% (мол.)] приводит к увеличению концентрации электронов в зоне пламени. На первый взгляд, это удивительно, так как хлор должен понижать концентрацию электронов за счет связывания атомов щелочных металлов в хлориды и прилипания электронов к атому [c.61]

    В работах Бакулиной и Ионова [83, 84] методом поверхностной ионизации были определены разности в величинах сродства к электрону атомов всех галогенов (см. стр. 244). Однако абсолютное значение величины Л (Вг) не определялось, а было принято по работе [3330]. Бэйли [623] на основании масс-спектрометрического измерения концентрации ионов при испарении КВг нашел Л (Вг) = —80,9+ 1,5 ккал г-атом -. Кубиччотти [1229] получил Л(Вг) = — 79,5+ ккал г-атом в результате расчета по циклу Борна—Габерана основании известных в литературе теплот образования галоидных соединений щелочных металлов, одноатомных галогенов и щелочных металлов в газообразном состоянии и энергии кристаллической решетки соответствующих солей, вычисленной теоретически в работе [1229]" . [c.275]

    Эти оценки полностью согласуются с элементарными электростатическими вычислениями при использовании модели точечных диполей. Согласно таким вычислениям, поляризация молекулы воды может давать существенный вклад в этот процесс. Ранее при изучении ионизации щелочных металлов замечено, что небольшие добавки ацетилена в горючую смесь приводят к более быстрому установлению равновесного уровня ионизации. По всей видимости, это связано с образованием в зоне реакции ионов НзО+ и с последующим процессом передачи заряда атому натрия. Однако Шофилд [144] показал, что такой механизм может эффективно проявить себя только при малой степени нонизации металлов — порядка нескольких процентов. Результаты его экспериментов при больших степенях равновесной ионизации (10—70%) свидетельствуют о незначительном влиянии добавок ацетилена в катализе процесса ионизации. [c.269]

    Это представление можно углубить, если принять во внимание спектроскопические данные. Спектры (см. стр. 280 и сл.) показывают, что у атомов каждого элемента этой группы 2 электрона связаны особенно непрочно по сравнению с остальными, и именно на -уровне с теми же главными квантовыми числами, что и у соседних щелочных металлов. При отщеплении только одного электрона спектр оставшегося электрона находится в том же соотношении к спектру атома предшествующего щелочного металла совершенно так же, как спектр однократно ионизированного гелия к спектру атом 1 водорода. Однако в соответствии с более высоким главным квантовым числом связь в данном случае оказывается далеко не такой прочной, как у гелия. Таким рбразом, сильно электроположительный характер элементов главной подгруппы II группы объясняется строением их атомов аналогично тому, как это было сделано для щелочных металлов. Однако из строения атома следует, что электроположительный характер элементов главной подгруппы II группы должен быть в среднем несколько слабев, чем у щелочных металлов. Поэтому у последних на внешней оболочке связь оказывается еще более слабой, чем у элементов главной подгруппы II группы. Справедливость этого положения подтверждается сравнением потенциалов ионизации (табл. 46), полученных из спектроскопических данных, с данными табл. 28 (стр. 180). Связь электронов на внешней оболочке у металлов щелочноземельной группы прочнее, чем у щелочных металлов, так как атомы последних имеют более высокий эффективный заряд ядра (ср. стр. 256 и с л.) [c.268]

    ГИИ диссоциации молекул Рг и большой энергии связи С—F), а йод, наоборот, даже не дал продукта внедрения, среди щелочных металлов наиболее прочно связывается с графитом цезий, а натрий и в особенности литий не дают графитидов. Это понятно, так как сумма энергий атомизации и ионизации лития равна 163 ккал/г-атом, для натрия эта величина равна 144, а для калия, рубидия и цезия соответственно 121, 116 и 108 ккал/г-атом. [c.379]

    I группы или щелочных металлов Li, Na, К, Rb, s, (Fr), атом которых обладает единственным электроном на s-орбитали уровня, следующего за восьмиэлектронным уровнем атома инертного газа (в отличие от Си, Ag, Au). Химия этих элементов является наиболее простой по сравнению с химией элементов любой другой группы. Здесь также сходство между первым членом группы и родственными элементами значительно больше, хотя исключительно небольшие размеры атома и иона лития приводят к некоторым заметным отличиям в химических свойствах, которые будут подробнее рассмотрены в дальнейшем. Низкий потенциал ионизации (5,39 эе) обусловливает легкое образование иона Li , который существует как таковой в кристаллических солях, например Li l. В растворах ион сильно сольватирован, и в водном растворе его можно представить в виде Li (aq). Литий образует ковалентные связи Li — X. Вблизи точки кипения пар металла лития преимущественно одноатомен, но содержит около 1"/о двухатомных молекул Lig. Такие молекулы были обнаружены по характерному полосатому спектру. Несмотря на то что в первом приближении можно считать, что связь Li — Li обусловлена s—s-нерекрыванием, более подробное изучение свидетельствует о том, что имеется некоторая s—р-гибридизация, Б результате которой связь приобретает на 14 /о р-характер. Энергия связи Li —Li (27 ккал моль) довольно низка, а межатомное расстояние Li — Li равно 2,67 А. Существуют соединения лития, подобные gHgLi и gH-Li, которые проявляют свойства типичных ковалентных соединений, будучи довольно летучими и растворимыми в неполярных растворителях. В настоящее время не только не известны другие степени окисления лития, отличные от -fL но их нельзя ожидать вследствие того, что Li" обладает конфигурацией [c.57]

    Сродство к электрону. Присоединение электрона к атому, иону или молекуле тоже будет сопровождаться энергетическим эффектом. Энергия, выделяющаяся при этом, называется сродством к электрону А. По алгебраическому знаку сродство противоположно энергии ионизации, т. е., как правило, Л — положительная величина. Если сродство к электрону отрицательно, то это означает, что частица принимает электрон лишь в силу каких-то обстоятельств. В этом случае, чтобы заставить принять электрон, требуется затратить энергию. Так, щелочные металлы слабо удерживают свой единственный внешний электрон величина Л ж 70 кДж/моль атомов (для лития и натрия). Для бериллия и магаия установлено небольшое отрицательное сродство от —30 до —60 кДж/моль атомов. У них имеются заполненные -орбитали, которые и делают э1щотермическим процесс образования их отрицательного иона. Вообще же сродство к электрону в ряду литий — фтор имеет тенденцию к возрастанию и атом фтора — самый элекроотрицательный элемент во всей периодической системе. Склонность к образованию анионов растет по периоду и убывает вниз по группе. Встречаются и исключения из правила, например сродство к электрону у хлора больше, чем у фтора. Величины энергии сродства к электрону известны для лебольшого числа элементов, так как прямое их экспериментальное определение сопряжено со значительными трудностями, а теоретический расчет (по методу Хартри — Фока или с использованием цикла Борна — Габера) также довольно сложен л к тому же ке всегда надежен. Точно, однако, известно, что процесс присоединения второго электрона всегда эндотермический и потому не могут существовать в свободном виде двухзарядные отрицательные ионы типа 0 , и др. Значение сродства [c.167]

    Если атом щелочного металла придет во взаимодействие с атомом галоида, то электронная потребность каждого из них сможет удовлетвориться путем переноса электрона от металла к галоиду, от перенос будет полным и приведет к образованию двух ионов, которые удерживаются вместе только электростатическими (или кулоновскими ) силами. Такую валентную связь обычно называют электровалентной или гетерополярной связью. Связи такого рода легко разрываются при растворении вещества в растворителе с высокой диэлектрической постоянной. Этот процесс нам хорошо известен, и мы назьшаем его ионизацией. Примером такой реакции является следующий процесс  [c.473]

    Этот детектор является модификацией пламенно-ионизационного детектора. В нем используется отличие в ионизации в пламени в присутствии щелочного металла. Сигнал детектора превышает сигнал простого пламенно-ионизационного детектора на несколько порядков, особенно если анализируются соединения, содержащие галогены или фосфор. Щелочной металл в пламени ионизуется по реакции [70] А-ЬХч А+Ч-е-ьХ, где А — атом щелочного металла и X — молекула газа. Под каталитическим воздействием соединений, к которым детектор наиболее чувствителен (фосфор- и галогенсодержащие соединения), ионизация происходит в соответствии с реакцией А-Ь2Нч А++е+Н2. [c.208]

    КАЛИЙ (Kalium) К — химич. элемент I гр. периодич. системы Менделеева, принадлежит к подгруппе щелочных металлов, п. н. 19, ат. в. 39,102. Природный К. состоит из 3 изотопов К (93,08%), (0,0119%) и К 1 (6,76%). Слабо радиоактивный изотоп К (Гуг = 1,32 10 лет) распадается двумя путями 88% атомов образуют в результате Р -распада Са , 12% путем Г-захвата превращаются в Аг . Поперечное сечение поглощения тепловых нейтронов атомом К. (природная смесь изотопов) 1,97 барн. Иа искусственных радиоактивных изотопов наиболее важен К (7 Vi = 12,52 года), применяющийся как радиоактивный индикатор в химии, медицине и биологии. Конфигурация внешних электронов атома К. 4s. Энергия ионизации (в ав) КО- К+-+К - -К +— соответственно равна 4,34 31,8 46,0 60,9. Металлич. К. был впервые выделен Дэви в 1807 электролизом твердого, слегка влажного КОН. Позднее Гей-Люссак и Тенар получили К. в больших количествах, прокаливая едкое кали с углем в стальной трубке. [c.174]


Смотреть страницы где упоминается термин Щелочные металлы атом, ионизация: [c.400]    [c.42]    [c.263]    [c.173]    [c.152]    [c.81]    [c.25]    [c.219]    [c.178]    [c.331]    [c.48]    [c.10]    [c.326]    [c.17]    [c.544]    [c.173]    [c.10]   
Основы общей химии Том 2 Издание 3 (1973) -- [ c.217 ]




ПОИСК





Смотрите так же термины и статьи:

Металлы атомы



© 2025 chem21.info Реклама на сайте