Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Органические соединения синтез в природе

    Роль азота и фосфора в жизни клеток и организмов исключительно велика. Они входят в состав ДНК — важнейших органических соединений, с помощью которых осуществляются синтез белка и передача наследственных признаков. Фосфор входит в активные группы ферментов, переносчиков водорода, а также в молекулы веществ, аккумулирующих энергию процессов обмена. Важную роль для жизнедеятельности организмов играют цикл азота в природе и фосфатный цикл. [c.343]

    Биосинтез целлюлозы привлекает внимание не только с точки зрения установления механизмов синтеза самого распространенного в природе органического соединения, но и с целью разработки промышленного метода синтеза свободной от примесей целлюлозы. Особенностью биосинтеза целлюлозы в клетке является то, что этот структурный полисахарид образуется в клеточной стенке в виде микрофибрилл. [c.335]


    В зависимости от объекта исследования биохимию условно подразделяют на биохимию человека и животных, биохимию растений и биохимию микроорганизмов. Несмотря на биохимическое единство всего живого, существуют и коренные различия как химического состава, так и обмена веществ в животных и растительных организмах. Обмен веществ, или метаболизм,—это совокупность всех химических реакций, протекающих в организме и направленных на сохранение и самовоспроизведение живых систем. Известно, что растения строят сложные органические вещества (углеводы, жиры, белки) из таких простых, как вода, углекислый газ и минеральные вещества, причем энергия, необходимая для этой синтетической деятельности, образуется за счет поглощения солнечных лучей в процессе фотосинтеза. Животные организмы, напротив, нуждаются в пище, состоящей не только из воды и минеральных компонентов, но содержащей сложные вещества органической природы белки, жиры, углеводы. У животных проявления жизнедеятельности и синтез веществ, входящих в состав тела, обеспечиваются за счет химической энергии, освобождающейся при распаде (окислении) сложных органических соединений. [c.15]

    О том, как происходил отбор структур, каков его механизм, сказать довольно трудно. Но этот процесс оставил нам своего рода. музей. Подобно тому как из 107 химических элементов только 6 органогенов да 10—15 других элементов отобраны природой, чтобы составить основу биосистем, так же в результате эволюции происходил тщательный отбор и химических соединений. Из миллионов органических соединений в построении живого участвуют лишь несколько сотен из 100 известных аминокислот в состав белков входит только 20 лишь четыре нуклеотида лежат в основе-всех сложных полимерных нуклеиновых кислот, ответственных за наследственность и регуляцию белкового синтеза в любых живых организмах. [c.196]

    Все это привело к тому, что в органической химии восторжествовали новые, материалистические представления и учение о жизненной силе было отвергнуто подавляющим большинством химиков. Это способствовало бурному развитию органической химии. Во второй половине XIX и в начале XX в. синтетическим путем были получены многие, иногда очень сложные вещества, ранее добывавшиеся только из растительных и животных организмов, а также разнообразные углеродсодержащие соединения, обладающие всеми характерными особенностями органических веществ, но не встречающиеся в природе. Все это отвечало запросам практики и дало возможность по-новому организовать производство органических соединений. В последующие годы органический синтез приобрел огромное практическое значение. В настоящее время синтетическое получение целого ряда органических веществ гораздо более выгодно и доступно, чем выделение их из природных продуктов. [c.12]

    Негумифицированные органические вещества сравнительно легко разлагаются в почве. Содержащиеся в них элементы питания — азот, фосфор, сера и другие переходят в доступную для растений минеральную форму. Однако не вся масса этих органических веществ (органических соединений, входящих в состав растительных и животных остатков) полностью минерализуется. Одновременно в почве идет синтез новых очень сложных органических веществ. Некоторая часть негумифицированных органических веществ, разлагаясь в почве, превращается в сложные органические соединения специфической природы, служит источником для образования гумусовых, или перегнойных, веществ. [c.94]

    Фотосинтез включает сложный комплекс различных но природе реакций, в результате которьк образуются молекулы углеводов, представляющие собой концентрат энергии в клетке. Фотосинтезом можно назвать процесс синтеза органических соединений, идущий за счет световой энергии  [c.15]


    Это свойство сопряженных реакций играет исключительно важную роль в живой природе. Например, синтез важнейщих компонентов живой материи — белков и нуклеиновых кислот соответственно из аминокислот и нуклеотидов сопровождается существенным увеличением энергии Гиббса. Эти процессы становятся возможными потому, что протекают сопряженно с гидролизом аденозинтрифосфорной кислоты (АТФ), который сопровождается существенным уменьшением энергии Гиббса, перекрывающим ее рост при синтезе указанных полимеров. Наоборот, образование АТФ из продуктов ее гидролиза, сопровождающееся увеличением энергии Гиббса, происходит сопряженно с окислением органических соединений (идущим с существенным уменьшением энергии Гиббса). [c.391]

    Теория химического строения создала все необходимые предпосылки для целенаправленного синтеза разнообразных органических веществ заданного состава и строения. Опа позволила планировать синтез новых органических соединений, не встречаемых в природе и нашедших впоследствии важное практическое применение. В 1864 г. А. М. Бутлеров говорил, что есть все основания ручаться за возможность синтетического получения любого органического вещества. К концу XIX в. было синтезировано уже несколько десятков тысяч органических соединений [c.238]

    Первоначально объектом изучения органической химии были лишь вещсства, выделенные пз растительных или животных организмов. В 1828 г. немецкий химик Ф. Велер впервые получил искусственным иутем (синтезировал) органическое соединение — мочевину. С этого времени началось бурное развитие органического синтеза получено большое число соединений, не встречавшихся в природе. Предметом изучения современной органической химии являются все органические вещества — как природные, так и синтетические. [c.293]

    Органический синтез — очень своеобразный вид интеллектуальной деятельности, творческой во всех смыслах поиск решений здесь базируется не столько на логических, сколько на эвристических (не формализуемых) основах и его результатом является создание объектов новой, искусственной Природы. Здесь воедино слиты такие разнородные подходы, как строгий научный анализ — основа предвидения — в исследовании природных явлений, реакций органических соединений, так и почти художественный дизайн эстетически привлекательных целей и поиск внутренне красивых решений, лаконичных и целесообразных. Разумеется, огромную роль играет и экспериментальное мастерство, которое в свою очередь предполагает не только владение техническим арсеналом своего дела, но и развитое чувство вещества — тонкое, почти интуитивное понимание особенностей его поведения. Недаром органический синтез называли и называют искусством. [c.11]

    Витамины представляют собой группу незаменимых органических соединений различной химической природы, необходимых любому организму в ничтожных концентрациях и выполняющих в нем каталитические и регуляторные функции. Недостаток того или иного витамина нарушает обмен веществ и нормальные процессы жизнедеятельности организма, приводя к развитию патологических состояний. Витамины не образуются у гетеротрофов. Способностью к синтезу витаминов обладают лишь автотрофы, в частности растения. Многие микроорганизмы также образуют целый ряд витаминов, поэтому синтез витаминов с помощью микроорганизмов стал основой для разработки технологий промышленного производства этих биологически активных соединений. [c.53]

    Одним из разделов современной органической химии является создание высокоэффективных процессов получения органических соединений ароматического характера многоцелевого назначения. В значительной степени решение этой задачи связано с разработкой инструментария - эффективных методов получения широкого ряда разнообразных по структуре ароматических соединений, содержащих функциональные группы различной природы. Реакции ароматического нуклеофильного замещения являются эффективными инструментами синтеза разнообразных азотсодержащих гетероциклических соединений. Процессы этого типа могут быть использованы как для введения в ароматические соединений гетероциклических фрагментов либо модификации гетероароматических структур, так и непосредственно для формирования гетероциклов. [c.126]

    Традиционно существенным разделом органической химии является создание высокоэффективных процессов получения разнообразных органических соединений. В значительной степени решение этой задачи связано с разработкой инструментария - эффективных методов получения широкого ряда различных по структуре ароматических продуктов, содержащих функциональные группы различной природы. В частности, это относится к азот- и галогенсодержащим ароматическим структурам многоцелевого назначения. Реакции ароматического нуклеофильного замещения являются эффективными инструментами синтеза разнообразных полифункциональных ароматических соединений. Нами исследована реакция замещения активированного и неактивированного атомов галогена в бензольном кольце на феноксигруппу, содержащую различные заместители  [c.155]

    Распространенность в природе некоторых органических соединений, методы их получения, состав, строение, свойства и применение такого рода соединений (углеводородов, их хлорпроизводных, спиртов, органических кислот) были уже рассмотрены в гл. 7 и 8. Обсуждение этих вопросов будет продолжено в последующих разделах, причем особое внимание будет обращено на природные соединения, в частности на ценные вещества, получаемые из растений, а также на синтетические вещества, используемые человеком. Ряд важных разделов органической химии не будет затронут совсем сюда относятся методы выделения и очистки природных соединений, методы анализа и установления строения соединений, методы синтеза, применяемые в органической химии (в большем объеме, чем они были изложены в гл. 7 и 8). [c.355]

    Более 90% всей добываемой нефти перерабатывается в топлива, масла, битумы и другие традиционные нефтепродукты, а остальная ее часть служит сырьем для нефтехимической переработки. Химическая переработка нефтяного сырья, как правило, заключается в глубоком разрушении созданных природой органических соединений с последующим конструированием из полученных элементарных звеньев (этилена, пропилена, бензола и др.) более слЪжных молекул с заданными свойствами. За истекший период развития химия и технология нефти достигли огромных успехов в области интенсификации процессов фракционирования и деструкции нефтяных компонентов и синтеза новых полезных веществ. В то же время крайне незначительно прогрессировало направление, основанное на непосредственном использовании ценнейших веществ, присутствующих в нефти аЬ origine. [c.3]

    Полярография может быть успешно использована в контроле процессов синтеза мономеров и других полупродуктов, применяющихся для получения полимеров. Мы не будем здесь останавливаться на всех возможных случаях определения веществ, участвующих в реакциях синтеза мономеров, так как природа таких соединений разнообразна и число их велико. В работах по полярографии органических соединений можно найти большое число методик полярографических определений. Рассмотрим несколько примеров комплексного использования поляро- [c.147]

    Число подобных структур, возникающих просто при вариации природы и положения всего лишь одной из групп, или, составит Если варьировать обе группы, то общее число возможных комбинаций составит 1029. 10 , что примерно в 10 раз превышает число всех атомов Земли. Всего углерода, имеющегося в нашей Галактике, не хватит на то, чтобы получить все соединения из этого набора даже в миллиграммовых количествах. Каждый из третичных атомов углерода в соединениях 70 является асимметрическим центром, и поэтому любое из них может быть представлено 2 стереоизомерами, что увеличивает общее число структур типа 70 примерно до 5,4 10 . Для их синтеза (по 1 мг каждого) не хватит уже всех нуклонов во всей наблюдаемой Вселенной. Так, от абстрактной математической бесконечности мы приходим к вполне реальному, поистине неисчерпаемому многообразию органических соединений. [c.51]


    Здесь нельзя не упомянуть еще об одном перспективном направлении работ по приготовлению катализаторов специального назначения для процессов синтеза жидких топлив. В Институте катализа Сибирского отделения АН СССР развита теория цеолитных катализаторов, позволяющих предвидеть селективность их каталитического действия в отношении синтеза изопарафинов, ароматических углеводородов и предшественников кокса из органических соединений различной природы в зависимости от химического состава и координационного состояния атомов активных центров. На основе этих представлений созданы катализаторы и разработаны методы их синтеза с высокой устойчивостью к коксообразованию, селективные в отношении синтеза ароматических соединений и изоме-ризованных парафинов. [c.257]

    Возвращаясь к рассмотрению процессов оптической активации соединений в природе, можно предположить, что качественный скачок в протекании биохимических реакций был сделан, когда появившийся в результате спонтанного разделения рацемата при реакциях или при кристаллизации, а также в результате асимметрической адсорбции на природных минералах (кварц, глины) [119] или путем сочетания того или другого процесса (например, путем образования соединений включения) небольшой избыток оптического изомера начал постоянно увеличиваться в результате действия стереоспецифических катализаторов но кинетическому механизму Лангенбека. Однако этими путями в природе с равной вероятностью образовывались бы оба изомера. Тогда бы преобладание одного изомера в прхгроде имело случайный характер. Но один фактор в природе (циркулярно поляризованный свет и поляризованные элементарные частицы), по-видимому, действовал в одной форме. Этот фактор на протяжении долгих лет эволюции непрерывно воздействовал в большей степени на один изомер как три разложении рацемата, так и при синтезе оптических изомеров, что способствовало появлению односторонней оптической активности органических соединений в природе [101, 120]. [c.24]

    Кремннйорганическиесоединения — представители более широкого класса так называемых элементорганических соединений. Полимерные элементорганические соединения сочетают термическую стойкость, присущую неорганическим материалам, с рядом свойств полимерных органических веществ. В настоящее время разработаны методы синтеза полимерных фосфор-, мышьяк-, сурьма-, титан-, олово-, свинец-органических, бор-, алюминий- и других элементорганических соеди-нени1. Большинство из этих соединений в природе не встречается. усил( 1шо исследуются теплостойкие полимеры, в основе которых лежат ьепн  [c.421]

    Современная органическая химия может с гордостью заявить о своей способности синтезировать неизвестные Природе соединения огромной сложности и об обладании набором разнообразнейших методов, позволяющих выполнять почти любые химические трансформации. Такое заявление надежно подкрепляется множеством вьщающихся достижений органического синтеза последних десятилетий. Тем не менее, впечатление от таких мажорных аккордов немедленно тускнеет при сопоставлении с работой химических механизмов даже простейшей живой клетки. Тысячи соединений (и просп,1Х, и исключительно сложных) синтезируются ферментами в любой момент жизни клетки при обычных (физиологических) условиях в воде, в узком интервале значений pH, без применения высоких температур и давлений и без помоши наших суперактивных реагентов типа сверхкислот, сверхсилькых оснований, щелочных металлов, галогенов, литийорганических соединений и т. п.. В любой клетке непрерывно осуществляются многостадийные синтезы огромного разнообразия органических соединений, необходимых для поддержания ее жизни. Все эти синтезы выполняются за считанные минуты с количественными выходами и строго регао- и стереоспецифично Это означает, что все наиболее трудные проблемы стратегии и тактики органического синтеза уже давно решены на химических комбинатах , оперирующих в любой живой системе. Такое высочайшее совершенство биосинтеза невольно вызывает у химиков смеш анные чувства и восхищения, и подавленности от сравнения своих скромных возможностей с достижениями Природы, [c.476]

    Сернистые соединения вследствие их корродирующего действия на металлы, а также неприятного запаха и токсичности рассматривались лишь как вредные компоненты нефтепродуктов. Поэтому одной из главных задач очистки нефти и ее дистиллятов являлось возможно полное освобождение их от сернистых соединений. За последние 20 лет положение в этом отношении почти не изменилось. К сера-органическим соединениям по-прежнему относятся лишь как к компонентам нефти, ухудшающим технические свойства углеводородных фракций, и не рассматривают их как возможные источники химического сырья. При использовании этого сырья не только откроются новые пути более полной и целесообразной утилизации нефти, но и появятся неизвестные в настоящее время в технике и в природе направления синтеза сераорганических соединений, которые обладают комплексом ценных для практического применения свойств (физиологическая активность, активные компоненты в технических изделиях на основе высоконолимерных веществ, антикатализаторы, консервирующие вещества и т. д.). Было проверено действие концентратов сераорганических соединений из южноузбекистанских нефтей как инсектисидов [12]. Опрыскивание водной эмульсией та1шх концентратов хлопчатника, пораженного паутинным клещи-ком, дало положительный эффект. [c.335]

    Успехи органического синтеза вызвеши поворот химической промышленности к органической химии. Перед ней была поставлена задача целенаправленных поисков новых органических соединений и разработки новых методов получения уже известных веществ, имеющих практическое значение и производимых в промышленных масштабах. При этом от процессов, направленных на замену природных продуктов (красителей, лекарственных и душистых веществ) синтетическими, промышленность органического синтеза переходит к процессам производства новых, не встречающихся в природе соединений и структурных аналогов уже известных. [c.241]

    Химия как искусство. Внутреннюю обшлость химии и искусства, которая заключается в их творческой природе, заметил еще М. Бертло. Химия, как и искусство, сама создает для себя и для других наук объекты, которые вновь изучаются и иссл яуются, например, для того, чтобы достичь более совершенного результата. В качестве примера можно привести синтез и модификацию высокомолекулярных соединений, не имеющих аналога в природе — полиорга-носилоксанов, которые в своей структуре соединяют характерные черты неорганических и органических соединений и в силу этого обладают уникальными молекулярными и практическими свойствами. Фактически химия доказывает, что новые формы и образы отражения и проявления реальности могут быть не только на уровне макрообъектов, но и на макромолекулярном и молекулярном уровнях. [c.17]

    Целью работы является исследование возможностей механохимических методов для осуществления твердофазного синтеза и модификации свойств молекулярных кристаллов органических соединений, обладающих биологической активностью и применяемых в фармации в качестве лекарственных препаратов. Основное напраапение исследований - изучение природы полученных с помощью механических воздействий ме-тастабильных состояний лекарственных веществ в связи с особенностями строения молекулярных кристаллов и их склонностью к полиморфным превращениям. [c.12]

    Методы электрохимии могз т быгь использованы для анализа и синтеза органических соединений, установления или подтверждения структуры, исследования природы каталитической активности, изучения промежуточных продуктов, генерирования хс-милюминесценции, исследования механизма процессов переноса электрона, изучения связи между структурой и электрохимической активностью, инициирования полимеризации, синтеза катализаторов и их компонентов, процессов деструкции, изучения биологических окислительно-восстановительных систем и т. д., а также для исследования кинетики, механизмов реакций, солевых эффектов, сольватации, влияния электрического поля на химические реакдии и в ряде других областей науки. Поэтому весьма отрадно, что нашелся целый ряд исследователей, которые решили направить свои усилия на развитие органической электрохимии [1] Объединение усилий больгиого числа специалистов сделало возможным достижение успеха одновременно на многих направлениях. Благодаря тому, что данная область химии находится иа стыке нескольких паук, большинство [c.21]

    Экспериментатьные исследования путей биосинтеза дают обширную информацию о химии этих процессов. Эти знания обеспечивают твердую основу для всей области бномиметических путей синтеза разнообразных природных соединений, которые используют стратегические принципы, разработанные Природой (см., например, синтез морфина, разд. 3.2.1). Однако, несмотря на многочисленные экспериментальные данные о механизме основных биохимических трансформаций, нам все еше слишком мало известно о способе действия фермента как катализатора. Был предложен целый ряд гипотез ддя объяснения замечательной способности ферментов осуществлять высоко эффективный и селективный катализ. Это было предметом многочисленных исследований по созданию специальных химических моделей ферментативного катализа (см, ниже). Кроме того, имеются еще более важные аспекты ферментативного катализа, а именно способность ферментов в нужный момент узнавать свой субстрат среди тысяч органических соединений, присутствующих в клетке, и регулируемость активности ферментов. Деятельность сотен и тысяч ферментов, одновременно оперируюшлх в любой живой системе", требует же -сткого управления с тем, чтобы в каждый данный момент и в каждом конкрет- [c.476]

    Одним из наиболее важных факторов при этом является природа и тип катализатора, то есть его селективность по отношению к различного рода связям в молекуле органического соединения. Обнаружение ряда селективно действующих катализаторов принадлежит к числу крупных успехов, достигнутых в области органического катализа за последние годы. В настоящее время наряду с катализаторами группы благородных металлов (Р1, Рс1 и др.), восстановленными никелем и медью широко применяется ряд элементарных и смешанных катализаторов, обладающих достаточной активностью и избирательностью. В отличие от катализаторов платиновой группы, они дешевы и могут использоваться промышленностью. К их числу принадлежат скелетные катализаторы (13, 27, 28), прежде всего никель Ренея, никель Бага, скелетная медь (29) и др., катализаторы на носителях (никель на кизельгуре, на АЬО.., и др.), а также окисные катализаторы, например, медно-хромовый и т. д. Кроме того, различные добавки к катализаторам (промоторы и ингибиторы) позволяют повышать их избирательность и использовать с успехом для специальных целей в тонком синтезе. Так например, прибавление ничтожных количеств 2п н Ре солей к платиновым катализаторам (РЮг, Р1 — чернь) даёт возможность осуществлять такие реакции, которые не были достижимы с чистыми катализаторами этого типа, в частности, избирательно гидриро- [c.90]

    Промышленное производство лекарственных веществ органической природы мало отличается от производства красителей, органических промежуточных продуктов или других синтетических веществ и вместе с ним составляет промыш.1енность тонкого органического синтеза. Поэтому химию синтетических лекарственных веществ можно рассматривать как химню сложных органических соединений. [c.101]

    Среди переходных металлов следующим по значению для орг ческого синтеза является никель. Наиболее важные реакции с участ никеЛьсодержащих частиц приводят к связыванию двух органичес молекул. В реакциях аллил/алогенндов с карбонилами никеля oi зуются комплексы, в которых аллильные группы связаны с пике, Природа этих связей отличается от связей, которые свойственны мет органическим соединениям, обсуждавогимся ранее в этой главе. В i с никелем участвуют л-орбнтали поэтому такие металлорганиче соединения называют п-аллильными комплексами. Детали их элект ного строения более полно обсуждаются в разд 5,5, [c.168]

    Химия жизпи, органическая химия, поначалу была совершен-ло отделена от неорганической. Она считалась надежной опорой витализма, до той поры, когда научились синтезировать органические соединения из веп(еств неживого происхождения (начало было положено синтезом мочевины O(NH2)2, проведенным Вёлером Е 1828 г. . В дальне вхсм органическая химия перестала быть химией живого и превратилась в синтетическую химию соединений углерода — химию углеводородов и их производных. Почти независимо развивалась биохимия — наука о строении и свойствах биологических молекул, о течении химических реакций в живых организмах. Биохимия достигла грандиозных успехов в расшифровке сложных сетей метаболизма. Из биохимии в союзе -с физикой выросла молекулярная биология, занимающаяся физико-химическим, молекулярным истолкованием основных биологических явлений, прежде всего наследственности. Одновременно органическая химия вновь обратилась к живой природе на основе многолетнего опыта исследований органических соединений. Возникла биоорганическая химия, а затем и бионеорганическая химия, изучающая биологические молекулы, содержащие атомы металлов. Провести границы между перечисленными областями исследований химии жизни невозможно, да в этом и нет необходимости. [c.23]

    Органические соединения, получаемые темплатным методом, в большинстве случаев проявляют выраженную способность к комплек-сообразованию Появление одного из наиболее интересных свойств макроциклических лигандов — способности к образованию прочных комплексов — заложено в них самой природой этого метода синтеза. [c.28]

    Именно это открытие проломило брешь в стене предубеждений, разделявших органическую и минеральную химию, и убедило химиков, что и органические вещества могут быть получены искусственно, без участия гипотетической жизненной силы. Насколько прочно все же держалось это предубеждение, следует из высказывания французского химика Жерара, установившего некоторые основные понятия органической химии, например понятие гомологии, и являющегося одним из авторов закона Авогадро — Жерара. Жерар в 1842 г., когда многие простые органические соединения были уже получены искусственным путем,. ысказал мнение, что синтез столь сложного вещества, как сахар, никогда не сможет быть осуществлен. Это скептическое предсказание было опровергнуто в 1861 г., когда А. М. Бутлеров впервые получил синтетически сахаристые вещества (из формалина). Наряду с этим быстро росло число синтезированных углеродсодержащих веществ, не встречающихся в природе. Так, в 1825 г. Фарадей получил бензол, еще ранее стали известны этилен, бромистый этилен, а также ряд производных бензола. В 1842 г. Зинин из нитробензола получил анилин, а в 50-х годах того же столетия из анилина были синтезированы первые анилиновые красители — мовеин Перкина и фуксин. [c.12]

    С помощью ультразвука научились получать высокостабиль-иые дисперсные системы и аэрозоли, осуществлять, синтез сложных органических соединений и многие гидрометаллургические г.роцессы. Установлено, что скорость и направление химических реакций, протекающих в жидких средах в ультразвуковом поле, з В(лсят от природы газов, содержащихся в облучаемой среде, Например, в присутствии водорода в облучаемой воде ингибируются процессы окисления ионов иода, но одновременно иод ато-мизируется и энергично взаимодействует с водородом. Течение и скорость химической реакции в ультразвуковом поле можно регулировать путем насыщения озвучиваемой среды инертными газами. Последние усиливают процессы ионизации, в частности диссоциацию молекул воды. В ультразвуковом поле можно осуществить синтез аммиака, насыщая воду предварительно азотом и водородом. Под действием ультразвука в воде, насыщенной оксидом углерода (II) и водородом, образуется формальдегид в [c.107]

    Химия гетероциклических соединений — одно из ведущих направлений органической химии. Гетероциклические соединения различной природы служат основой многих природных и синтетических биологически активных веществ, а также обладают целым рядом других полезных свойств многие из них применяются, например, как органические полупроводники, фотоактив-ные материалы, антиоксиданты, присадки к топливам и маслам, материалы для активных сред жидкостных лазеров (на красителях), технические и пищевые красители, консерванты и т. д. Наряду с большой практической значимостью гетероциклические соединения представляют несомненный теоретический интерес как модели для изучения взаимосвязи химических свойств соединений с их строением, а также для разработки методов органического синтеза, что, конечно же, напрямую связано со строением соединения, причем важнейшее значение имеют размер цикла, степень насьиценности, природа и число гетероатомов. [c.5]


Смотреть страницы где упоминается термин Органические соединения синтез в природе: [c.127]    [c.37]    [c.117]    [c.380]    [c.65]    [c.53]    [c.3]    [c.53]    [c.16]   
Основы общей химии Том 2 Издание 3 (1973) -- [ c.574 ]




ПОИСК





Смотрите так же термины и статьи:

Синтез органических соединений



© 2025 chem21.info Реклама на сайте