Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Периодическая инертных газов

    Одиако, если принять периодическую таблицу как руководство, аргон не может существовать одни. Он должен быть одним из представителей семейства инертных газов — элементов с нулевой валентностью. Столбец, занимаемый этими газами, должен располагаться между столбцами, занятыми галогенами (хлором, бромом и г. д.) и щелочными металлами (натрием, калием и т. д.) валентность и тех, и других равна единице. [c.107]

    Другие сильно радиоактивные элементы были получены лишь в следовых количествах. В 1899 г. французский химик Андре Луи Дебьерн (1874—1949) открыл актиний. В 1900 г. немецкий физик Фридрих Эрнст Дорн (1848—1916) открыл радиоактивный газ, который получил название радона. Радон — один из инертных газов (см. гл. 8), располагающийся в периодической таблице ниже ксенона. Наконец, в 1917 г. немецкие химики Отто Ган (1879— [c.146]


    Перед остановкой печи на ремонт змеевик освобождают от продукта продувкой инертным газом или водяным паром согласно технологическому регламенту. Трубы змеевика печи периодически подвергают контрольным замерам. В случае превышения допустимых пределов износа трубы заменяют. [c.80]

    Поэтому аппаратуру и трубопроводы необходимо периодически освобождать от полимеров, а перед остановкой и вскрытием аппаратов продувать инертным газом. [c.24]

    Центрифуги должны быть снабжены блокировочными устройствами и сигнализацией, исключающими работу агрегатов при прекращении поддува инертного газа и падении его избыточного давления в системе. Для этого разработаны специальные автоматические системы, обеспечивающие заданный режим продувки и периодический или непрерывный контроль содержания кислорода в газовой смеси. [c.162]

    Для предотвращения образования взрывоопасной смеси в воздуховодах расчетом устанавливают необходимый объем воздуха (пара) для разбавления смеси газов. Чтобы контролировать содержание газов и паров, отсасываемых из оборудования, устанавливают автоматические газоанализаторы, оповещающие производственный персонал о содержании взрывоопасных газов и паров выще допустимых пределов. Технологическую вентиляцию блокируют с работающим оборудованием. При отключении технологической вентиляции немедленно прекращается работа оборудования и подача материалов. Чтобы предотвратить попадание конденсата из линий в адсорберы, что может привести к аварии, на линиях монтируют специальные дренажные устройства. Кроме того, линии периодически продувают паром или инертным газом. [c.231]

    Для обеспечения безопасных условий трубопроводы электролизных ванн должны быть подвергнуты продувке инертным газом. Продувку ведут до содержания в них не более 2% (об.) кислорода. Внутренние поверхности арматуры нужно периодически осматривать и пассивировать. [c.131]

    На трубопроводах, транспортирующих сильнодействующие ядовитые вещества и сжиженные газы (независимо от давления паров), устройства для периодического опорожнения с помощью съемных трубопроводов или гибких шлангов не допускаются. Опорожнение этих трубопроводов должно осуществляться либо самотеком, либо методом продувки их инертным газом в цеховую аппаратуру. [c.309]

    Для повышения безопасности процессов полимеризации прежде всего необходимо обеспечивать высокую герметичность полимеризаторов и другого оборудования. Отделения полимеризации должны быть обеспечены аварийными емкостями для слива реакционной массы. Водная эмульсия после проведения процесса полимеризации перед сливом в открытую аппаратуру должна полностью освобождаться от мономеров. Полимеризаторы, работающие периодически под повышенным избыточным давлением, должны до начала каждой операции полимеризации испытываться на плотность инертным газом под давлением, на 30% превышающем рабочее [c.341]

    Чтобы предотвратить подобные аварии, необходимо предусмотреть меры, позволяющие полностью удалять полимер при очистке аппаратов и коммуникаций. Оборудование, в котором могут накапливаться самовоспламеняющиеся полимеры, следует периодически очищать и перед вскрытием продувать инертным газом. Во многих случаях требуемая степень очистки не достигается, так как отсутствуют необходимые эффективные технические средства. Эту [c.344]

    Для предупреждения аварий в цехах экстракции прежде всего следует обеспечивать герметичность системы. Официальными нормативными документами предусмотрено технологические аппараты и трубопроводы проверять на герметичность перед включением их в работу. Технологические аппараты, не бывшие в работе, а также прошедшие тщательную очистку с последующим лабораторным анализом среды в аппарате, могут испытываться на герметичность сжатым воздухом. Все остальные технологические аппараты должны испытываться инертным газом. В процессе испытания сосудов,. аппаратов и коммуникаций все соединения проверяют на пропуск газа мыльным раствором или другим надежным способом. Испытание ведут в течение 4 ч при периодической проверке. Вновь установленные аппараты испытывают в течение 24 ч. Результаты испытания на герметичность считают удовлетворительными, если падение давления в течение 1 ч не превышает 0,1% от начального при токсичных и 0,2% при пожаро- и взрывоопасных средах для вновь устанавливаемых технологических аппаратов и 0,5%—Для технологических аппаратов, подвергаемых повторному испытанию. [c.367]


    При обнаружении пропусков давление должно быть стравлено ч неисправности устранены. При достижении в испытуемом агрегате рабочего давления подачу сжатого воздуха или инертного газа прекращают, устанавливают наблюдение за падением давления в агрегате в течение не менее 4 ч при периодической проверке его и не менее 24 ч для вновь установленны.х аппаратов. [c.81]

    При достижении рабочего давления подачу воздуха или инертного газа прекращают и устанавливают наблюдение за падением давления в агрегате в течение не менее 4 ч при периодической проверке его и не менее 24 ч для вновь установленных аппаратов. [c.263]

    Выбросы из конденсатора очистки происходят периодически. Возвратный винилхлорид подвергается обработке в двухступенчатой системе, где мономер обезвоживается и очищается. Инертный газ, водяной пар и мономер винилхлорида выбрасываются в атмосферу. Сбросы из этого источника за- [c.268]

    В соответствии с этим атомы всех элементов основной подгруппы первой группы периодической системы, обладая одним электроном, избыточным по сравнению с атомами инертных газов, отдают на образование связи по одному электрону, атомы элементов основной подгруппы второй группы — по два электрона, третьей — по три, переходя при этом в состояние положительных ионов. Наоборот, атомам элементов основных подгрупп седьмой, шестой групп недостает соответственно одного или двух электронов до структуры электронных оболочек, свойственной атомам инертных газов. Поэтому они будут стрем.иться достроить свою наружную электронную оболочку, связывая новые электроны и переходя при этом в состояние отрицательно заряженных ионов. Однако здесь речь идет не обязательно о полной передаче электрона. Эффективная величина заряда образующихся положительных, так и тем более отрицательных ионов большей частью меньше, чем число электронов, передаваемых данным атомом на образование связей или приобретаемых им при их образовании. [c.59]

    Недостатком куба является плохое использование кислорода воздуха и, следовательно, высокое содержание кислорода в газах окисления, т. е. возможны закоксовывание стенок газового пространства и взрывы. Разбавление газов окисления инертным газом с целью снижения содержания кислорода осложняет последующую борьбу с загрязнением окружающей среды. Кроме того, нет удовлетворительной системы поддержания оптимального температурного режима процесса (использование воды для охлаждения приводит к образованию загрязненных сточных вод и связано с опасностью выброса битума, рециркуляция части битума через холодильники неудобна вследствие периодического характера процесса). В связи с этим кубы рекомендуются для получения только небольших партий битумов, когда нецелесообразно использовать аппараты непрерывного действия. [c.292]

    Адсорбцию газовых примесей ведут главным образом в реакторах периодического действия без теплообменных устройств, на полках которых находится адсорбент. Очищаемый газ пропускают через слой адсорбента обычно сверху вниз со скоростью, определяемой гидравлическим сопротивлением слоя и другими условиями абсорбции и составляющей 0,05—0,3 м/с. В процессе очистки адсорбент теряет активность в результате насыщения поверхности адсорбируемым веществом, а также ее экранирования посторонними веществами пылью, смолистыми продуктами и др. Потерявший активность адсорбент регенерируют нагревом и пропусканием острого или перегретого водяного пара, воздуха или инертного газа (азота). Иногда потерявший активность адсорбент полностью заменяют. При очистке воздуха от малых количеств токсичных веществ [(2—5) 10 % (об.)] и при дезодорации воздуха применяют установки, состоящие из ячеек со сменными перфорированными патронами с активированным углем. Срок службы таких патронов исчисляется годами и после дезактивации их удаляют, а иногда регенерируют. [c.236]

    Весьма нежелателен контакт жидкого водорода с воздухом. При попадании в жидкий продукт воздуха последний может сконденсироваться в нем с образованием твердой фазы. Затвердевшие газы могут забивать небольшие проходные сечения в коммуникациях, вентили или малые отверстия и тем самым вызывать аварию — разрыв трубопроводов. Кроме того, накопление в жидком водороде твердых частиц воздуха или кислорода, как ул<е отмечалось, создает потенциальную опасность взрыва. Однако этой опасности легко избежать, если своевременно удалять нежелательные примеси путем промывки систем, контактирующих с водородом, инертным газом (азотом или гелием), или фильтрации [155, 158]. Поскольку из газообразного водорода, предназначенного для последующего ожижения, довольно трудно удалить следы кислорода, то со временем в емкостях, из которых периодически выдается жидкий водород, могут образоваться отложения твердого кислорода. Поэтому такие емкости должны периодически с интервалами в 1—2 года очищаться (размораживаться) [163]. В связи с этим, а также учитывая чрезвычайно низкую температуру кипения водорода, для выдавливания его из одной емкости в другую нельзя применять воздух или азот. Приемлемы для этой цели только газообразный водород и гелий. [c.186]

    Указанный изокомпонент можно получить методом ректификации или извлечения н-парафинов цеолитами. Выход изопентана из сырья — до 97%. Стабильный изомеризат содержит 55,2% изопентана и 44,6% н-пентана. Глубина превращения н-пентана не превыщает 60% за один проход, поэтому процесс ведут с рециркуляцией изомеризата, кратность которой зависит от содержания н-пен-тана в исходном сырье и уменьшается с его увеличением. Расход водорода составляет 0,22—0,28% на сырье. Катализатор регенерируют периодически трехступенчатым выжигом кокса при 300, 380 и 450 °С в потоке инертного газа с добавлением на последней ступени 0,2—1% кислорода. Состав инертного газа, подаваемого в циркуляционную систему, должен удовлетворять следующим требованиям 02 0,2% С0 10 мг/м СОг Ю мг/м Юмг/м влаги Ю мг/м . В зависимости от режима продолжительность работы катализатора между регенерациями 4—12 месяцев. [c.318]

    Десорбцию бензиновых фракций осуществляют при пониженном давлении. При разделении керосиновых и газойлевых фракций в процесс включают стадию продувки, Применяемый для продувки агент отделяют от м-алканов и оставшегося после их отделения денормализата ректификацией. Высокая температура разделения способствует коксованию тяжелых фракций сырья и отложению кокса на поверхности адсорбента, что приводит к снижению его активности. Отложившийся на адсорбенте кокс периодически выжигают в системе регенерации смесью воздуха с инертным газом. Прн переработке бензиновых фракций выжиг кокса проводят несколько раз в год при переработке более тяжелого сырья — каждый месяц. [c.257]

    Катализатор медленно терял свою активность в результате того, что на его поверхности отлагались углерод и смолистые вещества. Это требовало периодической регенерации, которая заключалась в выжигании углеродистых отложений кислородом, разбавленным инертными газами. Общий срок службы катализатора составлял 6 месяцев. [c.315]

    Монтежю (рис. 111-29) представляет собой горизонтальный или вертикальный резервуар 1, в котором для перекачивания жидкости используется энергия сжатого воздуха или инертного газа. Монтежю работает периодически. [c.150]


    Над поверхностью жидкости в сосуде 4 и емкости 5 находится инертный газ (азот), подаваемый для того, чтобы по возможности устранить окисление смеси при соприкосновении ее с воздухом. Кроме того, подача азота в камеры электронагревателей котла 2 обеспечивает взрывобезопасные условия его работы. Вся система также периодически продувается азотом. [c.318]

    Пульсационный ситчатый экстрактор (рис. Х1И-24, а) представляет собой обычную колонну I с ситчатыми тарелками, к которой присоединен пульсатор 2. По аналогии с насосами различают пульсаторы поршневые (плунжерные), мембранные, сильфонные и пневматические. Поршневой пульсатор — это бесклапанный поршневой насос, который присоединяется либо к линии подачи легкой фазы (рис. ХП1-24, а), либо непосредственно к днищу колонны. С помош,ью пневматического пульсатора (рнс. ХП1-24, б) при движений" поршня 1 периодически изменяется давление воздуха или инертного газа над свободным уровнем жидкости в камере 5, соединенной с насосом. Эти колебания давления, в свою очередь, вызывают колебательное движение жидкости в экстракционной насадочной колонне 3.  [c.545]

    Следующей проблемой, особо интересной и серьезно повлиявшей на структуру Периодической системы, стало размещение благородных (инертных) газов. Эта проблема возникла неожиданно и поначалу вызвала замешательство среди ученых. Даже в то время, когда Менделеев построил вторую [c.69]

    Ученые, которые с недоверием относились к системе Д. И. Менделеева, пытались истолковать открытие инертных газов как удар по Периодической системе. В действительности же, эти элементы не только нашли свое место в системе, но и логически дополнили ее, заняв место между типическими металлами и типическими неметаллами (галогенами). Для них Менделеев вводит отдельную нулевую группу, которую помещает в левой части таблицы перед первой. Позже она была совмещена с 8-й группой и велся длительный спор об их альтернативности. (Как будет показано позже, спор этот был безосновательным). Компромиссно остановились на 8-й группе. В современных таблицах нулевая группа отсутствует. Считается, что проблема решена окончательно. Но это мнение ошибочно, и мы еще вернемся к данному вопросу. [c.71]

    Таким же образом, и даже, может быть, еще проще, можно найти основные состояния ближайших, следующих за углеродом атомов Ы, О, Р, N6. У неона 5- и р-уровни слоя п = 2 полностью заполнены, т. е. электроны не могут появиться на этих оболочках, не нарушив принципа Паули. Поэтому для следующего элемента начинается заселение уровней слоя п = 3. Это происходит точно так же, как и для слоя п = 2 в результате образуется электронная оболочка инертного газа аргона. Термы этого периода также одинаковы, т. е. электронные оболочки атомов элементов первых двух коротких периодов периодической системы имеют аналогичное строение. Опустим подробности построения электронных моделей остальных элементов периодической системы. С последовательностью заполнения энергетических уровней электронов в слоях и особенностями заполнения, например появлением побочных групп и лантаноидов, можно ознакомиться с помощью табл. А.5. В термы включен также индекс справа внизу, который указывает на суммарный орбитальный и спиновый моменты. [c.59]

    Неметаллические свойства элемента выражены тем сильнее, чем легче его атомы принимают электроны. Связь электрона с ядром определяется средним расстоянием электрона на данной орбитали от ядра и эффективным зарядом ядра. Последний зависит прежде всего от степени экранирования заряда ядра внутренними электронами, а также от перекрывания орбита-лей внутренних и внешних электронов. Поэтому неметаллы занимают правую верхнюю часть периодической системы элементов. Легко также понять, что в соединениях одного и того же элемента его неметаллические свойства усиливаются с ростом положительного заряда иона. Неметаллы отличаются еще и тем, что у их атомов заселенность валентных орбиталей близка к максимально возможной согласно принципу Паули. Поэтому атомы неметаллов проявляют тенденцию путем присоединения электронов приобретать электронную конфигурацию ближайшего инертного газа. Неметаллы называют также электроотрицательными элементами. [c.459]

    Трубную обвязку холодильников необходимо выполнять так, чтобы вода подводилась в аппарат снизу, а охлаждаемый продукт — сверху. Особенно важно соблюдать это условие при охлаждении двухфазных (парогазожидкостных) сред. Для периодической продувки грубного пространства желателен подвод воздуха или инертного газа к входному штуцеру оборотной воды на аппарате и сброс его в атмосферу. [c.100]

    Для восстановления активности и селективности катализаторов их периодически, а на некоторых установках непрерывно, подвергают окислительной регенерации при температуре 300—500°С и давлении 1,0—1,5 МПа осушенными дымовыми газами, содержащими 0,5—1,0 % кислорода. Во избежание отравления катализатора применяют инертный газ (азот) высокой чистоты, содержащий не выше 0,5 % об. кислорода, 1 % об. углекислоты, 0,5 % об. окиси углерода и не более 0,2 г/нм водяных паров. Дозировка воздуха для равномерности выжигания кокса и предупреждения местных перегревов регламентируется начальной концентрацией кислорода в инертном газе. Кратность циркуляции (отношение объема газа, подаваемого в час на единицу объема регенерируемого катализатора) рекомендуется поддерживать в пределах 500—1000 нмVм Остаточное содержание кокса на регенерированном катализаторе составляет менее 0,02 % мае. на катализатор [7]. [c.12]

    Сублиматор периодического действия обычно представляет собой камеру, куда загружают тележки или противни с продуктом. Сублимацию проводят под вакуумом или при атмосферном давлении (иногда в атмосфере инертного газа). Обслуживание суб-лимгторов периодического действия связано с тяжелым ручным [c.183]

    Общая характеристика благородных газов. Главную подгруппу восьмой группы периодической системы составляют благородные газы — гелий, неон, аргон, криптон, ксенон и радон. Эти элементы х 1рактеризуются очень низкой химической активностью, что и дало основание назвать их б л а г о р о д н ы м и, нли инертными, газами. Они лишь с трудом образуют соединения с другими элементами или веществами химические соединения гелия, неона и аргона не получены. Атомы благородных газов ие соединены в мол(екулы, иначе говоря, их молекулы одноатомны. [c.667]

    В нефтехимической промышленности при гидрировании углеводородного сырья часть циркулирующего газового потока (продувочные газы) периодически или непрерывно выводят из системы. Цель этой операции—вывод из цикла инертных газов для поддержания на определенном уровне концентрации водорода в реакционной смеои. Применение мембранных газоразделительных установок позволяет утилизировать водород из этих газов, одновременно повысить концентрацию водорода в колонне гидрокрекинга и, как следствие, увеличить скорость процес- [c.281]

    Для снижения пожаро- и взрывоопасности периодически действующие технологические процессы рекомендуется по возможности заменять непрерывными, а при использовании аппаратов периодического действия максимально герметизировать загрузочные и разгрузочные устройства, оборудовать их системой вентиляцион-I ного отсоса паров и газов из внутреннего объема или системой продувки инертным газом перед разгрузкой. [c.80]

    Пневмокомпенсаторы устанавливают в непосредственной близости к цилиндрам насоса на нагнетательном и всасывающем коллекторе. Воздух или инертный газ, заключенный в пневмокомпенсаторе, разделяет поток жидкости в трубопроводе на два участка. На внутреннем участке, прилегающем к насосу, суммарный расход жидкости изменяется по рассмотренному выше закону. На внешнем участке, расположенном по отношению к насосу за компенсатором, жидкость движется по совсем другому закону, который обусловлен действием перепада давлений между концом трубопровода и компенсатором. В результате неравенства в каждый момент времени объемов жидкости, поступающей в компенсатор и вытекающей из него, объем пневматической подушки в компенсаторе даже при установившемся режиме работы насоса непрерывно изменяется от до При этом происходит периодическое колебание давления газа от до р 1 . [c.113]

    Отиарные колонны. Выбросы периодические. После полимеризации непрореагировавший мономер винилхлорида уносится из реактора в систему разделения. Некоторое количество винилхлорида остается в воде или же уносится с частицами поливинилхлорида. Этот остаточный винилхлорид отгоняется в реакторе или в аппарате, называемом отпарной колонной, под вакуумом и (или) с паром. Процессы отгонки важны контроль сбросов из отстойника, центрифуги, сушилки и емкостей для хранения товарных продуктов зависит от эффективного удаления остаточного ВХМ, захваченного гранулами ПВХ. Выбросы в атмосферу содержат инертные газы и винилхлорид, их количество колеблется в пределах 0,5—12,3 г/кг. [c.268]

    На рис. 11.16 представлена упрощенная принципиальная схема процесса синтеза аммиака. Азото-водородная смесь (AB ) поступает после подсистемы I компримиро-вания, где сжимается от 0,1 до 30 мПа, в смеситель II. Здесь происходит смешение свежей AB с потоком 15. После смешения AB поступает в катализаторную коробку ИИ колонны синтеза III, где AB подогревается за счет теплоты отходящих газов из реакционного пространства 111 колонны. Выходящий из колонны синтеза аммиака газ (поток 7) охлаждается в подсистеме IV (охлаждение и получение пара) водой. Выделение аммиака происходит в двух конденсаторах V и VIII сначала при умеренном охлаждении в конденсаторе V, а затем при глубоком охлаждении в конденсаторе VIII. Глубокое охлаждение происходит в аммиачном испарителе. Накапливающиеся инертные газы (аргон, метан) периодически частично удаляют из системы путем вывода из цикла синтеза части циркулирующего газа (поток 11) ъ аппарате VI. Параметры, характеризующие потоки, приведены в табл. II.6. [c.58]

    Технологическая схема производства метиламинов фирмы Leonard Pro ess (США) представлена на рис. 9.6. Сырье — жидкий аммиак и метанол — смешивают с рециклом аммиака и одного или двух метиламинов (в зависимости от того, в каких соотношениях надо производить моно-, ди- и триметиламин) смесь в жидком виде проходит с заданной скоростью через подогреватель, теплообменник обратных потоков, перегреватель и поступает в реактор 1, наполненный катализатором аминирования. Продукты реакции проходят последовательно теплообменник обратных потоков, где используется часть тепла экзотермической реакции для нагрева сырья, конденсатор-холодильник и затем поступают в сепаратор 2, из верхней части которого периодически осуществляют сдувку инертных газов (СО, На. Nj и др.), образующихся в незначительных количествах прн [c.291]

    Накапливающиеся пнертпые газы (аргон, метан и др.) пони кают парциальные давления На и N3 и поэтому уменьшают выход аммиака. Их периодически частично удаляют из системы путем вывода из цикла синтеза части циркулирующего газа (продувочный газ). Для того чтобы содержание инертных газов в циркулирующем газе не повышалось, количество их, выводимое с продувочным газом, должно быть равно их количеству, вводимому в цикл со свежей азото-водородной смесью. Количество продувочного газа может быть подсчитано [3] по формуле [c.214]

    Лет 30-40 тому назад основным аппаратом дпя производства окисленных битумов был так называемый куб - цилиндрический аппарат периодического действия с небольшой асличиной отношения высота диаметр . Типовой куб имеет высоту 10 м и диа етр 5,3 м. В зависимости от заданной производительности на установке сооружали до 11 кубов [1,2], Каждый из них снабжали необходимой для осуществления процесса окисления контрольно-измерительной аппаратурой, а также системой, обеспечивающей безопасность эксплуатации (паротушение, взрывные пластины). Графики работы кубов (закачка сырья, окисление, паспортизация и слив битума) совмещали так, чтобы периодическая работа отдельных кубов обеспечивала непрерывность рабочы установки в целом. Как окислительный аппарат куб характеризуется низкой эффективностью, то есть невысокой степенью использования кислорода воздуха в реакциях окисления содержание кислорода в газах окисления составляет при производстве дорожных битумов 7-9 % об., строительных - 13-17% об. Это, с одной стороны, предопределяет высокие энергозатраты на производство (расход электроэнергии на сжатие воздуха для окисления, расход топлива на сжигание газов окисления), с другой стороны, обусловливает возможность закоксовывания стенок газового 17ространства ок1 слительпого аппарата н загораний и взрывов в газовой фазе. Обеспечение взрывобезопасности требует постоянной подачи инертного газа (азота или водяного пара) для снижения концентрации кислорода до величины, нормированной правилами техники безопасности. [c.42]

    В ЭТОМ случае ацетон выделяют тоже промывкой газов водой, получая в результате 10%-ный водный раствор. Выход ацетона из ацетилена равен 85%. Как и при получении ацетона из этилового спирта, катализатор с течением времени теряет свою активность и нуждается в периодическом выжигании воздухом [4, 5]. Этот процесс осуществляли успешно, применяя даже разбавленный ацетилен (8% С2Н2), полученный методом частичного сожжения метана с кислородом (гл. 15, стр. 283) [6]. Катализатором служила окись цинка. Температуру в реакторе выдерживали в интервале 350—450°. Вследствие больших объемов инертных газов раствор, полученный при промывке газов водой, содержал всего 3% ацетона. [c.317]

    Выделение органической химии в самостоятельный раздел химической науки вызвано многими причинами. Во-первых, это связано с многочисленностью органических соединений (в настоящее время известно свыше трех миллионов органических Еси еств, а неорганических— около 150 тыс.). Вл дряя причина состоит в сложности и своеобразии органических веществ по сравнению с неорганическими. Например, их температуры плавления и кипения имеют более низкие значения они легко разрушаются при воздействии на них даже сравнительно невысоких температур (часто не превышающих 100°С), в то время как неорганические вещества свободно выдерживают очень высокие температуры. Большинство химических реакций с участием органических соединений протекает гораздо медленнее, чем ионные реакции неорганических веществ, что обусловлено природой основной химической связи в органических веществах — ковалентной связью. Углерод, входящий в состав органических веществ, обладает особой способностью соединяться не только с несколькими другими углеродными атомами, но и почти со всеми элементами периодической системы (кроме инертных газов). Следует подчеркнуть, что выход продукта в органической реакции, как правило, ниже, чем при реакции неорганических веществ. Кроме того, в области органической химии приходится сталкиваться с новыми понятиями и явлениями органический радикал, функциональная группа, изомерия и гомология, а также взаимное влияние атомов и атомных групп в молекуле. [c.5]

    Жесткие кислоты. Электронная оболочка жестких кислот характеризуется высокой стабильностью относительно внешних электрических полей. Наиболее жесткой кислотой является протон, который из-за отсутствия электронной оболочки и чрезвычайно малого радиуса прочно связывается с активным центром молекулы основания. Недеформируемой электронной оболочкой обладают также катионы с электронной конфигурацией инертного газа, такие как Са +, АР+, Т1 +, в которых электрические и магнитные моменты всех электронов полностью скомпенсированы. Эти катионы образованы в основном элементами главных подгрупп периодической системы. К последним близки по свойствам некоторые катионы переходных металлов с не полностью занятой d-oбoлoчкoй, например Мп + и Ре +. Способность к присоединению оснований возрастает по мере увеличения ионного потенциала. Кроме того, к жестким [c.396]


Библиография для Периодическая инертных газов: [c.200]   
Смотреть страницы где упоминается термин Периодическая инертных газов: [c.29]    [c.166]    [c.199]    [c.69]    [c.386]    [c.70]    [c.159]   
Основы общей химии Том 2 Издание 3 (1973) -- [ c.42 , c.47 ]




ПОИСК





Смотрите так же термины и статьи:

Газы инертные

Инертный газ



© 2025 chem21.info Реклама на сайте