Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Периодическая щелочных металлов

    Литий Ь от остальных щелочных металлов отличает большее значение энергии ионизации и небольшой размер атома и иона. Литий по свойствам напоминает магний (диагональное сходство в периодической системе). [c.485]

    Отличия в свойствах элементов главной й дополнительной подгрупп в пределах одной и той же группы периодической системы возрастают с повышением номера группы. Если свойства щелочных металлов и свойства элементов подгруппы меди (Си, Ag, Аи) не слишком сильно отличаются друг от друга, то в химии галогенов, с одной стороны, и в химии элементов подгруппы марганца (Мп, Тс, Не), — с другой, совсем уж мало общего. Что же в таком случае объединяет эти элементы в одну группу периодической системы Прежде всего то, что атомы всех элементов одной и той же группы характеризуются одинаковым числом валентных электронов, что [c.24]


    Чем объяснить различную последовательность расположения щелочных металлов в ряду напряжений и в периодической системе  [c.238]

    Некоторые закономерности. Рассмотрим теперь на сравнительно простых примерах связь вида диаграммы плавкости с положением элементов в периодической системе. Химически подобные элементы (соединения) дают и аналогичные диаграммы. В частности, элементы одной подгруппы или стоящие рядом в периоде с почти одинаковыми размерами атомов обычно образуют твердые растворы. Закономерность Б изменении типа диаграмм плавкости на примере щелочных металлов показана на рис. 73. Из рис. 73 видно, что отличие свойств от других элементов подгруппы приводит к тому, что они взаимно нерастворимы ни в твердом, ни в жидком состоянии линия ликвидуса представляет собой горизонталь при температуре плавления НЬ, линия солидуса — горизонталь при температуре плавления Ы. [c.224]

    Магнитные свойства. По отношению к магнитному полю все металлы делятся на три группы диамагнитные, парамагнитные и ферромагнитные. К диамагнитным веществам (обладающим отрицательной восприимчивостью к магнитному полю и оказывающим сопротивление силовым его линиям) относятся часть элементов I (Си, Ag, Ли), П группы (Ве, Zn, Сс1, Hg), П1 (Са, 1п, Т1) и IV группы (Се, Зп, РЬ) периодической системы. Металлы щелочных, щелочноземельных элементов, а также большинства -элементов хорошо проводят силовые линии магнитного поля, обладают положительной магнитной восприимчивостью. Они являются парамагнитными веществами и намагничиваются параллельно силовым линиям внешнего магнитного поля. Очень высокой магнитной восприимчивостью обладают Ге, Со, N1, Ос1, Ву. Они являются ферромагнетиками. Ферромагнетики характеризуются температурой, выше которой ферромагнитные свойства металла переходят в парамагнитные. Эта температура называется температурой Кюри. Для железа, кобальта и никеля эта температура составляет 768, 1075 и 362 °С, соответственно. [c.324]

    Главная подгруппа I группы периодической системы химических элементов Д. И. Менделеева, называемая также подгруппой щелочных металлов, включает литий Ы, натрий Ыа, калий К, рубидий КЬ, цезий Сз и франций Гг. Последний радиоактивен его единственный природный изотоп имеет период полураспада [c.142]

    Одиако, если принять периодическую таблицу как руководство, аргон не может существовать одни. Он должен быть одним из представителей семейства инертных газов — элементов с нулевой валентностью. Столбец, занимаемый этими газами, должен располагаться между столбцами, занятыми галогенами (хлором, бромом и г. д.) и щелочными металлами (натрием, калием и т. д.) валентность и тех, и других равна единице. [c.107]

    Особенность строения электронной оболочки атома водорода (как н гелия) не позволяет однозначно решить, в какой группе периодической системы он должен находиться. Действительно, если исходить И числа валентных электронов его атома, то водород должен нахо-д.1ться в I группе, что подтверждается также сходством спектров щ,е-лочных металлов и водорода. Со щелочными металлами сближает водород И его способность давать в растворах гидратированный положительно однозарядный ион Н+ (р). Однако в состоянии свободного иона Н + (г) — протона — он не имеет ничего общего с ионами щелочных мгталлов. Кроме того, энергия ионизации атома водорода намного больше энергии ионизации атомов щелочных металлов. [c.272]

    Катализатор содержит никель или кобальт 0,5 мас.% щелочных металлов (в расчете на КаО) обладает высокой активностью. Катализатор может содержать металлы группы платины и промоторы бериллий и магний или элементы III—VII групп периодической таблицы с атомным числом менее 40. Носителем катализатора является окись алюминия со средним радиусом пор менее 500 А, содержащая около 5% окиси кремния [c.152]


    Например, в настоящее время установлено, что атомные массы возрастают в такой последовательности Ре, N1, Со, Си в четвертом периоде (ср. с 4-й строкой рис. 7-1), Яи, КЬ, Рс1, Ag в пятом периоде (ср. с 6-й строкой рис. 7-1) и 08, 1г, Р1, Аи в шестом периоде (ср. с 10-й строкой рис. 7-1). Однако N1 по своим свойствам больше напоминает Рё и Р1, чем Со. Кроме того, оказалось, что Те имеет большую атомную массу, чем I, но I несомненно сходен по химическим свойствам с С1 и Вг, а Те сходен с 8 и 8е. Наконец, после открытия благородных газов обнаружилось, что Аг имеет большую атомную массу, чем К, тогда как все остальные благородные газы имеют меньшие атомные массы, чем ближайшие к ним щелочные металлы. Совершенно очевидно, что во всех трех отмеченных случаях нельзя руководствоваться атомными массами при размещении элементов в периодической системе. Поэтому всем элементам периодической системы были приписаны порядковые номера от 1 до 92 (в наше время до 105). (Порядковые номера элементов приблизительно соответствуют возрастанию их атомных масс.) Если расположить элементы в периодической таблице в последовательности возрастания их порядковых номеров, химически сходные элементы образуют в ней вертикальные колонки (семейства или группы). [c.311]

    В отличие от принятых ранее представлений, опытные данные приводят в настоящее время к заключению, что устойчивая конфигурация электронной оболочки может достигаться не только при полном присоединении электрона (типично ионная связь), но и при связывании его путем образования соответствующей полярной связи. Типично ионная связь образуется только между щелочными металлами и галогенами (и то главным образом между элементами, которые наиболее сильно различаются по своей электроотрицательности). При переходе же к более центральным группам периодической системы это различие постепенно уменьшается. [c.59]

    Патентная литература. Как это обычно бывает в патентной литературе, для окисления этилена запатентовано все. У этих патентов есть одна общая особенность — использование сереб-оа. Неизвестно ни одного катализатора, который с хорошим выходом и высокой производительностью дает окись этилена и не содержит серебра. В качестве добавок, полезных для тех или иных целей, запатентованы почти все остальные элементы периодической системы. Наиболее важными из них представляются добавки катионов щелочноземельных и щелочных металлов [45], а среди компонентов анионного типа, по-видимому, хлориды. Для большинства этих добавок имеется оптимальная концентрация, т, е. они могут оказывать как положитель- [c.232]

    В настоящее время существует несколько вариантов графического построения периодической системы. Рассмотрим один из них — короткопериодный (см. первый форзац). Эта таблица состоит из 10 горизонтальных рядов и 8 вертикальных столбцов, называемых группами. В первом горизонтальном ряду только два элемента — водород Н и гелий Не. Второй и третий ряды образуют периоды по 8 элементов, причем каждый из периодов начинается щелочным металлом и кончается инертным элементом. Четвертый ряд также начинается щелочным металлом (калий), но в отличие от предыдущих рядов он не заканчивается инертным элементом. В пятом ряду продолжается последовательное изменение свойств, начавшееся в четвертом ряду, так что эти два ряда образуют один так называемый большой период из 18 элементов. Как и предыдущие два, этот период начинается щелочным металлом К и кончается инертным элементом [c.21]

    Таллий находится в 9-м ряду III группы периодической системы. Это мягкий серебристо-белый металл, тускнеющий на воздухе, покрывающийся черной пленкой ТЬО. Температура плавления таллия 303°, кипения 1460°. Своими свойствами таллий близок к свинцу, серебру и щелочным металлам. [c.561]

    Энергия ионизации атома водорода равна 13, 595 эВ, сродство к электрону 0,78 эВ. Сравните эти характеристики водорода с соответствующими характеристиками галогенов и щелочных металлов (см. главу 17) и обсудите целесообразность помещения водорода в VII группу (главную подгруппу) периодической системы химических элементов Д. И. Менделеева, [c.108]

    Гелий и другие инертные газы занимают в периодической системе положение промежуточное между весьма реакционно-способными элементами — галогенами и щелочными металлами. В соответствии с их физическими свойствами (летучесть, растворимость) инертные газы относятся к неметаллическим элементам. [c.491]

    Указать положение меди и серебра в периодической системе элементов и написать электронные формулы их атомов. Почему восстановительные свойства у меди и серебра выражены слабее, чем у щелочных металлов  [c.197]

    Современные формы периодической таблицы. Периоды и группы. Типические (непереходные) элементы, переходные металлы и внутренние переходные. металлы (лантаноиды и актиноиды). Семейства элементов семи.металлы, щелочные. металлы, щсло июзсмглькыс . сталли и галогены. [c.302]

    Медь, серебро и золото мало напоминают щелочные металлы, с которыми их можно было бы сопоставить на основании рассмотрения короткопериодной формы периодической таблицы Менделеева (см. рис. 7-1). Медь обнаруживает в растворах главным образом состояние окисления + 2 и в меньшей степени -Н 1. Серебро, наоборот, чаще имеет в растворе состояние окисления -Ь 1, а состояния окисления -1-2 и -Ь 3 могут возникать только в предельно окислительных условиях. Для золота в растворе характерна степень окисления -I- 3 и реже + 1. Все три металла имеют небольшие отрицательные окислительные потенциалы, обусловливающие их инертность и сопротивляемость к окисленияю  [c.447]

    ОСНОВНЫХ подгрупп I и II групп периодической системы элементов, на рис. 1.19 6 — значёния п изоэлектронных ионов щелочных металлов и галогенов. На основа 1ии данных, приведенных па рис. 1.19 6 можно оценить неизвестное из эксперимента значение г,(А1-) (239 пм). [c.50]

    При изучении свойств растворов нередко прослеживаются проявления периодического закона. Покажем это на примере тепловых эффектов. Из таблиц, в которых собраны значения ЛЯм8 образования различных ионов, вытекает закономерный ход этих величин в ряду сходных частиц (например, С1 —Вг"—Г). Рассматривая в одинаковых условиях совокупность значений теплот растворения родственных соединений, легко обнаружить периодичность в ее изменении. Даже если учесть неполноту данных, представленных на рис. 44, и невысокую точность значений теплот растворения некоторых хлоридов, все же можно прийти к выводу о существовании определенной закономерности в ходе этих характеристик растворов. В подобных закономерностях содержатся и количественные соотношения. Один из мыслимых примеров представлен на рис. 45, на котором сопоставлены теплоты растворения хлоридов и бромидов щелочных металлов пц =-о°). [c.149]

    При периодическом способе получения деэмульгаторов независимо от конструкции реактора характер процесса одинаков. Синтез ведется под давлением, при повышенной температуре и в присутствии катализатора. Реакция протекает с вьщелением тепла (92 кДж на 1 моль превращенного этиленоксида), необходимое количество оксида вводится в реакцию постепенно. Температура при синтезе изменяется в пределах 110-180 °С, давление - от 0,25 до 0,5 МПа. Катализаторами в большинстве случаев служат гидроксиды щелочных металлов, используют в ряде случаев металлический натрий, кислотные катализаторы, кислоты Льюиса и др. расхЬд их колеблется от 0,01 до 1,5%. [c.140]


    Наконец, необходимо подчеркнуть, что значения тепловых эффектов реакций образования химических соединений, как и другие их свойства, находятся в периодической зависимости от атомных номеров элементов, образуюпщх эти химические соединения. Используя данные таблицы 14, проследите за периодической зависимостью значений 298 от атомных номеров щелочных металлов Ме и галогенов X, образующих галогениды типа МеХ. [c.50]

    В крупном промышленном масштабе ацетальдоль получают, прибавляя небольшое количество гидроокиси щелочного металла к ацетальдегиду и выдерживая смесь в течение нескольких часов при 20° или ниже. Процесс можно проводить непрерывно или периодически. Реакция — экзотер.ми-ческая (ДЯ = —13 ккал на 1 г-моль ацетальдегида), и поэтому следует предусмотреть отвод теплоты реакции. При осуществлении непрерывного процесса тепло реакции можно отводить с помощью энергичной рециркуляции продуктов реакции. [c.301]

    Измерение поверхностного дипольного момента р, позволяет судить о доле ионной составляющей межатомных связей, возникающих в процессе хемосорбции. В некоторых случаях, как, например, при сорбции на вольфраме паров натрия, калия и цезпя ди-польиые моменты достигают заметной величины, что указывает на высокую степень ионности связей. Для сравнения укажем, что дипольный момент монослоя тория на вольфраме имеет в 4—5 раз меньшее значение, чем дипольные моменты монослоев щелочных металлов. В данном случае связь преимущественно ковалентная. Поверхностные межатомные связи, образующиеся при сорбции на металлах и угле водорода, окиси углерода, азота, углеводородов, галогенидов отличаются высокой долей ковалентности. Были пблу-чены многочисленные доказательства того, что сорбция вышеуказанных газов на переходных металлах и близких им металлах группы 1В Периодической системы Д. И- Менделеева происходит благодаря образованию ковалентных связей с использованием не полностью занятых -орбиталей этих металлов (табл. 5). [c.197]

    Сопоставьте стандартные электродные потенциалы щелочных металлов в водных растворах и их электродные потенциалы в расплавленных солях (табл. 5 приложения) и ответьте на следующие вепросы 1) Какой ряд элементов в периодической системе наиболее соответствует вашим представлениям об изменении металлических свойств в группе 2) Какой из металлов [c.159]

    Гравиметрический анализ — один из наиболее универсальных методов. Он применяется для определения почти любого элемента. В больщей части гравиметрических методик используется прямое определение, когда из анализируемой смеси выделяется йнтересующий компонент, который взвешивается в виде индивидуального соединения. Часть элементов периодической системы (например, соединения щелочных металлов и некоторые другие) нередко анализируется по косвенным методикам. В этом случае сначала выделяют два определенных компонента, переводят их в гравиметрическую форму и взвешивают. Затем одно из соединений или оба переводят в другую гравиметрическую форму и снова взвешивают. Содержание каждого компонента определяют путем несложных расчетов. [c.164]

    Металлы подгруппы 1А периодической системы элементов И. Менделеева 1.1, Ыа, К, КЬ, Сз п Рг называются щелочными. Щелочноземельными металлами называются эле.менты подгруппы ПА Са, 5г, Ва, Ра на.ходящиеся в этой же подгруппе Ве и Мй к щелочноземельным металлам не относятся. В соответствии с электронным строением атомов щелочных металлов оии всегда одновалентны. Щелочноземельные металлы, Ве и в невозбужденном состоянии проявляют нулевую валентность. При возбуждении их атомы приобретают электронную ко)1фиг рацию наружного слоя пз пр и становятся двухвалентны.ми. За счиг образования дони )но-акцепторных связей валентность элементов может увеличиться, что особенно характерно для Ве. [c.127]

    Из таблицы видно, что аналитические группы ионов занимают определенные участки в периодической системе элементов. Наибольшее совпадение между группами периодической системы и аналитическими группами отмечается у I и II аналитических групп первая аналитическая группа (без Mg +) соответствует группе IA щелочных металлов, а вторая — подгруппе щелочно-земельных металлов, входящих в группу ИА. Наиболее многочисленная III аналитическая группа включает в себя катионы элементов групп IIIА и IIIB, а также лантаноидов, актиноидов и ряда других переходных металлов, например хрома, марганца, железа, кобальта, никеля, цинка. При этом часть ионов III аналитической группы — Zn +, [c.230]

    ФРАНЦИЙ (Fran ium, в честь Франции) Fr — радиоактивный химический элемент I группы 7-го периода периодической системы элементов Д. И. Менделеева, п. н. 87, массовое число самого долгоживущего изотопа 223. Стабильных изотопов не имеет. Известны 9 радиоактивных изотопов. Единственный изотоп, встречающийся в природе (Т,1 = 21 мин), открыт в 1939 г. М. Пере как продукт а-распада As. В химическом отношении Ф.— типичный щелочной металл, аналог цезия. [c.269]

    ЩЕЛОЧНЫЕ МЕТАЛЛЫ — химические элементы главной подгруппы I группы периодической системы элементов Д. И. Менделеева 11, Ыа, К1 Р1), Сз и радиоактианый элемент Рг. Гидроксиды Щ. м.— сильные основания (щелочи). Щ. м.— химически активные элементы — активность их возрастает от кРг. [c.288]


Смотреть страницы где упоминается термин Периодическая щелочных металлов: [c.325]    [c.371]    [c.339]    [c.408]    [c.172]    [c.294]    [c.306]    [c.25]    [c.246]    [c.298]    [c.587]    [c.591]    [c.55]    [c.114]    [c.148]    [c.151]    [c.169]    [c.183]    [c.281]   
Основы общей химии Том 2 Издание 3 (1973) -- [ c.210 , c.243 ]




ПОИСК







© 2025 chem21.info Реклама на сайте