Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Платина изотопы

    Из па )ладия изготовляют некоторые [шды лабораторной по суды, а также дета.>]н аппаратуры для разделения изотопов водорода. Сплавы палладия с серебром применяются в аппаратуре связи, в частности, для изготовления контактов. В терморегуляторах и термопарах используются сплавы палладия с золотом, платиной и родием. Некоторые сплавы палладия применяются в ювелирном деле и зубоврачебной практике. [c.699]

    Никель довольно распространен на Земле палладий и платина, как и другие платиновые металлы, относятся к числу редких элементов. Из платиновых металлов наиболее распространена платина. Никель существует в виде пяти, а палладий и платина — шести стабильных изотопов. [c.645]


    Ю. В. Баймаков с сотрудниками изучали процесс поведения иридия при электролитическом рафинировании меди и никеля, используя для этого радиоактивный изотоп 1г 2. Было установлено, что иридий обнаруживается в растворе как в форме ионов, так и в форме высоко диспергированных частиц. В катодном никеле иридия оказывалось значительно меньше, если анод заключали в полупроницаемые пленки, пропускавшие ионы, но препятствовавшие проникновению сквозь них коллоидных частиц (коллодиевые пленки). При очистке никелевых растворов от примесей было обнаружено, что цементная медь содержит небольшие количества платины и палладия и практически в ней [c.306]

    Исключение составляют примесные изотопы ксенона и платины. В частности, естественное содержание около 7з (33,8%). так что спектр ЯМР ядер со спином I = /2, связанных в молекуле с атомом платины, будет состоять из трех линий с отношением интенсивностей 1 4 1, и по такой картине спектра можно установить наличие атомов Р1. [c.37]

    Все варианты метода радиоактивных индикаторов дают тем более точные результаты, чем ниже Со-рг и чем более развитую поверхность имеет исследуемый электрод. Последним обстоятельством объясняется то, что большая часть наиболее надежных данных по адсорбции органических веществ получена методом радиоактивных индикаторов на электродах из металлов группы платины. Как уже указывалось выше, адсорбция на этих металлах сопровождается деструкцией молекул органических веществ. Однако радиоактивные методы в случае адсорбции соединений, меченных изотопом С, дают лишь общее количество адсорбированного углерода безотносительно к составу адсорбированных частиц. С другой стороны, если исследуемое органическое вещество содержит два различных меченых атома (например, С и 3 5), то методом радиоактивных индикаторов можно зафиксировать деструкцию таких молекул, а также соотношение в энергиях связи этих атомов с поверхностью электрода. Использование анализаторов радиоактивного излучения позволяет изучать адсорбцию соединений, содержащих несколько различных меченых атомов. [c.32]

    Например, линия испускания изотопа Ге расщеплена на шесть компонент благодаря наличию у ядра железа собственного магнитного момента (см. гл. XI. 3). Однако диффузия распадающегося с переходом в Ге в матрицу из меди, платины, палладия, хрома или нержавеющей стали, позволяет получить источник мессбауэровского излучения, обладающий синглетной линией испускания с большим значением величины вероятности испускания -квантов. [c.190]

    Современная медицина немыслима без использования этого метода. Широко применяются радиоизотопы золота. Четырнадцать радиоактивных изотопов золота могут быть получены как бомбардировкой нейтронами, протонами, дейтронами, а-частицами, так и при воздействии у-излучением на мишени из природного золота, включающего устойчивый изотоп эAu. Используют также элементы иридий, платину, ртуть, таллий. Наиболее широко применяют радиоактивные изотопы золота 1 "Аи и 1 >Аи. Изотоп золота " Au Ру ожно получить, например, в результате следующих ядерных реак- [c.73]

    Изотопный состав четных элементов, входящих в число триад Рс1 и Р1 сложен — естественная смесь изотопов, например, платины, а также палладия состоит из шести стабильных изотопов. Нечетные элементы имеют меньшее число стабильных изотопов, так, у иридия их два. Один из изотопов платины, считавшийся долгое время стабильным, сейчас отнесен к естественно-радиоактивным с очень большим ( 10 . лет) периодом полураспада. [c.153]

    Сколько нейтронов в ядре атома наиболее распространенного изотопа платины  [c.219]

    Природная платина состоит из шести изотопов. Содержание ее в литосфере— порядка 5-10 % (мае.). Самородная платина (с примесями других платиновых металлов) встречается в россыпях в виде крупинок. [c.433]


    Первичным продуктом этой реакции является платина-199, однако она быстро распадается с образованием изотопа золото-199. [c.431]

    Разработана методика активационного определения суммы редкоземельных элементов, рутения, палладия и платины с радиохимическим выделением этих элементов [753]. Предложен метод выделения и очистки Оу , Ки ° , Pd ° , Pt на изотопных носителях с использованием экстракции трибутилфосфатом. Для намерения активности определяемых элементов применяют торцовые счетчики. Сумму редкоземельных элементов определяют по изотопу Dy . В различных образцах металлического бериллия определено б Ю —3 10 Ки, 5-10 —Ы0- Рс1, 6 10 — ЫО Р1, 2,6-10-4—7-10 о/р суммы редкоземельных элементов. Возможно также у-спектрометрическое определение продуктов нейтронной активации [754, 755]. [c.192]

    Облучение платины нейтронами с образованием радиоактивного изотопа оказывает ускоряющее действие иа скорость катодных [c.174]

    Радиоактивные изотопы золота, свободные от носителя, можно получить посредством различных ядерных реакций с заряженными частицами из изотопов иридия, платины, ртути и таллия. Однако радиоизотопы, полученные на ускорителях, трудно доступны и дороги. Из числа радиоактивных изотопов золота, которые получают нейтронным облучением в реакторе, изотоп Au можно выделить свободным от носителя из облученной нейтронами пла-тины. Этот изотоп образуется по цепочке реакций [c.53]

    Кроме золота, при облучении платины образуются радиоактивные изотопы последней, главным образом (7 =18 ч) и [c.54]

    Это исследование показало, что при обмене холестерина с 70%-ным раствором уксусной кислоты-№ в воде-Нг в присутствии платины получается Н -холестерин, у которого 40% внедренного изотопа находится у С-6, приблизительно 3% — у С-3 и 52% распределено между С-24, С-25, С-26 и С-27 (см. Н -холестерин, другие способы получения). [c.434]

    С целью выяснения влияния хемосорбированного метанола на строение ионного двойного электрического слоя исследовали зависимость адсорбции ионов от потенциала электрода в подкисленных растворах, содержащих как слабо поверхностно- активные ионы (Ыа+, и ЗОг ), так и сильно поверхностно-активные (2п+2, Т1+, СГ и Вг ). Измерения проводили с помощью изотопов Ка-22, Сз-134, Zn-65, Т1-204, 8-35, С1-36 и Вг-82. Способы приготовления растворов и подготовки электродов были такими же, как и в [11, 12]. Потенциал электрода, поддерживаемый потенциостатом, сдвигался в анодную область от Тг =0, и через каждые 50 мв после выдерживания электрода при данном значении потенциала по 15—30 мин измеряли величину адсорбции ионов. Наши данные по адсорбции ионов на поверхности платинированной платины, свободной от метанола, полностью согласуются с результатами более ранних работ [13—16]. [c.41]

    Существенным для выбора между обеими этими группами механизмов могло бы стать исследование Розенталь и Веселовского с применением изотопа Розенталь и Веселовский электролитически покрыли платинированную платину слоем хемосорбированного кислорода, обогащенного О. Масс-спектрометрический анализ первых порций кислорода, выделявшегося при анодной поляризации в необогащенном растворе электролита, показал, что кислород обогащен О. Этот результат указывал бы на взаимодействие окислов металла по уравнению (4. 218), если бы было твердо установлено, что между окислом металла и свежим электролитом, не обогащенным кислородом, обмен О не происходит. На это указали сами авторы. Если бы подобный обмен имел место, то электролит непосредственно у поверхности электрода обогатился бы Ю. Газообразный кислород, который мог бы образоваться непосредственно, без участия кислородных соединений на металле, например по уравнению (4. 217), также оказался бы обогащенным. Таким образом, еще и теперь на основе имеющихся экспериментальных данных нельзя с уверенностью сделать выбор между обеими возможностями. [c.674]

    Строение электронных уровней атомов благородных металлов характеризуется почти полной или даже полной застройкой /-подуровня предпоследнего уровня. Способность к укомплектованию -подуровня 10 электронами особенно проявляется у атома палладия за счет перехода двух электро1[ов с подуровня 5д (см. табл. 1.1 Приложения). У элементов с четными атомными номерами известно много устойчивых изотопов у рутения и осмия по семь, у палладия и платины по шесть, а у элементов с нечетными атомными номерами — немного у родия и золота по одному, у серебра и иридия по два. Кроме устойчивых у этих элементов известно много радиоактивных изотопов. [c.324]

    РОДИЙ (Rhodium, греч. rhodon — роза) Rh — химический элемент VIII группы 5-го периода периодической системы элементов Д. И. Менделеева, п. н. 45, ат. м. 102,9055, принадлежит к платиновым металлам. Имеет один стабильный изотоп i Rh, радиоактивные изотопы Р. имеют массовые числа от 96 до 110. Р. открыт в 1803 г. Волластоном, название Р. дано в связи с тем, что растворы некоторых солей Р. окрашены в розовый цвет. В природе встречается вместе с платиной и платиновыми металлами. Р.— серебристо-голубоватый металл, напоминающий алюминий, твердый, тугоплавкий, трудно поддающийся обработке, химически устойчив, нерастворим в кислотах. В соединениях в основном трехвалентен. Легко образует комплексы. Р. применяют для изготовления устойчивых покрытий с высокой отражательной способностью (прожекторов, рефлекторов и т. д.). Сплавы Р. с платиной используют для изготовления химической посуды, катализаторов, термопар, фильер, научной аппаратуры,, в ювелирном деле и т. д. Соли Р. входят в состав лекарственных препаратов, черной краски для фарфора и др. [c.215]

    ТАНТАЛ (Tantalum назван по имени героя древнегреческой мифологии Тантала) Та — химический элемент V группы 6-го периода периодической системы элементов Д. И, Менделеева, п. н. 73, ат. м. 180,9479. Т. открыт в 1802 г. Экебергом. Природный Т. состоит из двух стабильных изотопов, известны 13 радиоактивных изотопов. Т.— металл серого цвета со слегка синеватым оттенком, т. пл. 2850° С, твердый, очень устойчив к действию кислот и других агрессивных сред, превосходит в этом даже платину. Получают Т. из тантало-ниобиевых руд. Т. в соединениях проявляет степень окисления +5. Используется для изготовления химической посуды, фильер в производстве искусственного во-токна, в хирургии для скрепления костей при переломах, для изготовления жаростойких, твердых и тугоплавких сплавов для ракетной техники и сверхзвуковой авиации, для изготовления электролитических конденсаторов, выпрямителей и криотронов, нагревателей высокотемпературных печей, арматуры электродных ламп, в ювелирном деле и др. [c.244]

    Мп, по кнслотостойкости превосходит даже платину. Кобальт является составной частью многих катализаторов. На основе кобальтовых соединений изготавливают краски и эмали разного цвета. Радиоактивный изотоп кобальт-60 используют в медицине для борьбы с раковыми заболеваниями ( кобальтовая пушка ). [c.495]

    Радиоактивная защита основана на использовании в составе необрастающих ЛКП радиоактивных изотопов углерода, кобальта, меди, таллия, иттрия, технеция с добавкой их, по массе 0,1...1,5 %. Радиоактивный технеций Тс с периодом полураспада 2,1-105 лет и его соединения применяют для защиты гидротехнических сооружений, корпусов судов, поверхностей резервуаров, трубопроводов, теплообменников, КИП и другой аппаратуры, эскплуатирующихся в морской или речной воде от обрастаний микроорганизмами. Эффект достигается при нанесении соединений Тс на металлы, древесину, оргстекло, стеклоткань, полимеры и другие соединения. Например, металлический Тс осаждали на аустенитные стали из электролита на основе пертехната аммония (рЯ=1) при плотности тока 1,3 А/дм2 (аноды — платина), толщина слоя до 1,6 мкм. [c.93]


    По хим. св-вам П. близок к платине и является наиб, активным платиновым металлом. При нагр. устойчив на воздухе до 300°С, при 350-800 °С тускнеет из-за образования тонкой пленки PdO, выше 850 °С PdO разлагается и вновь становится устойчивым на воздухе. Хорошо раств. в царской водке. В отличие от др. платиновых металлов, раств. в горячих конц. HNO3 и H SO . Переходит в р-р при анодном растворении в соляной к-те. При комнатной т-ре взаимод. с влажными С1 и Bfj, при нагр.-с F , S, Se, Те, As и Si. Характерная особенность П.-способность поглощать большие кол-ва Н (до 900 объемов на 1 объем П.) благодаря образованию твердых р-ров с увеличением параметра кристаллич. решетки предполагается также образование гидридов. Поглощенный Hj легко удаляется из П. при нагр. до 100 С в вакууме. Явления, наблюдаемые при поглощении тяжелого изотопа водорода катодом из П. в ходе электролиза DjO, принимались за свидетельство, холодного ядерного синтеза. П. взаимод. с расплавл. KHSO4, с Na Oj. ц [c.440]

    Родий Rh (лат. Rhodium), P.— элемент VIII группы 6-го периода периодич. системы Д. И. Менделеева, п. н. 45, атомная масса 102,905, принадлежит к семейству платиновых металлов. Имеет один стабильный изотоп i Rh. Открыт в 1803 г. И. Волластоном. Название от греч. rhodon (роза), так как растворы некоторых его солей окрашены в розовый цвет. В природе встречается вместе с платиной и платиновыми металлами. Р.—серебристо-голубоватый металл, более твердый и тугоплавкий, чем платина и палладий. Химически очень пассивен, не растворяется в кислотах. Проявляет главным образом степень окисления +3. Подобно платине, образует различные комплексные ионы. Применяют для получения стойких к потускнению покрытий с высокой отражательной способностью. Сплавы Р. с платиной применяют для изготовления химической посуды, в термопарах, как катализаторы, в ювелирном деле. [c.114]

    В условиях проведения электролиза водного раствора Na l (270 г/л) при 80 °С и плотности тока 0,1 А/см скорость растворения платины составляет 2—5-10 А/см [161]. Очень высокая стойкость платины и ее сплавов с иридием затрудняет точное определение скорости анодного растворения активного покрытия. Исследование с применением радиоактивных изотопов платины [125, 161, 164] позволило установить скорость растворения платины в условиях анодной поляризации и влияние на нее длительности процесса электролиза, перерывов тока, значения анодного потенциала и других факторов. При удовлетворительной устойчивости платинового и особенно платиноиридиевого покрытия титана в условиях анодного выделения хлора отмечалась очень малая устойчивость таких покрытий к действию амальгамы [165]. Для защиты активного покрытия из металлов платиновой группы от разрушения при контакте с амальгамой предложено наносить на анод пористый защитный слой, например, из магнетита, титана, сульфата магния [166] или применять анод из пористого титана с нанесением активного нокры- [c.76]

    Фукушима и Галлахер [3] исследовали катализируемый платиной в растворах уксусной кислоты-Н и воды-Н обмен водорода на дейтерий в стеринах. В случае насыщенных стероидов, содержащих кетогруппу, внедрялось значительное количество прочно связанного дейтерия и дейтерированный стероид извлекали с большим выходом. С увеличением числа двойных связей или ири наличии нескольких кетогрупп внедряется значительно большее количество изотопа в некоторых случаях может быть достигнут высокий выход меченого стероида, В случае стероидов, содержащих гидроксильные группы, обменные реакции менее эффективны, поскольку дегидрирование и гидрогенолиз заметно снижают выход. Ацетилирование приводит к уменьшению степени расщепления, существенно не изменяя при этом степень обмена. Исследовали влияние температуры, природы катализатора и концентрации исходного вещества. Из этих переменных наиболее важное значение имеет температура, поскольку ниже 100° обмен протекает очень медленно. [c.395]

    Для измерения адсорбции субстрата по мере протекания реакции был использован метод радиоактивных добавок с применением изотопа С-14, испускающего мягкое р-излучение. Реакционный сосуд (рис. 2) построен следующим образом. На дне средней ячейки имеется тонкая полимерная пленка, покрытая с целью обеспечения контакта слоем золота. Позолоченная пластинка представляет собственно электрод, который покрывается слоем платины. р-Изл5гчение измеряется с помощью расположенного снаружи сцинтилляционного счетчика. Таким образом можно измерить не только обычные параметры реакции гидрогенолиза, но и адсорбцию промежуточных веществ на поверхности катализатора. [c.21]

    ИРИДИЙ м. 1. 1г (Iridium), химический элемент с порядковым номером 77, включающий 31 известный изотоп с массовыми числами 168-198 (атомная масса природной смеси 192,22) и имеющий типичные степени окисления + III, - - IV, -I- VI. 2.1г, простое вещество, тяжёлый серебристо-белый металл применяется в качестве компонента сплавов с платиной и осмием, для изготовления тиглей, как защитное и коррозионностойкое покрытие, для изготовления слаботочных контактов и др. [c.161]

    ПЛАТИНА ж. 1. Ft (Platinum), химический элемент с порядковым номером 78, включающий 33 известных изотопа с массовыми числами 168-171, 173-201 (атомная масса природной смеси 195,09) и имеющий типичные степени окисления + II, + IV. 2. Ft, простое вещество, тяжёлый серебристобелый металл применяется как катализатор в неорганическом и органическом синтезе, для изготовления лабораторной посуды, фильер, термопар, неокисляющихся контактов, ювелирных изделий и др. [c.321]


Смотреть страницы где упоминается термин Платина изотопы: [c.420]    [c.177]    [c.183]    [c.185]    [c.193]    [c.141]    [c.146]    [c.421]    [c.447]    [c.570]    [c.53]    [c.284]    [c.587]    [c.421]    [c.447]    [c.150]    [c.160]    [c.220]    [c.297]    [c.427]   
Основы общей химии Том 2 Издание 3 (1973) -- [ c.381 ]




ПОИСК







© 2024 chem21.info Реклама на сайте