Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Платина химические

    Влияние условий термообработки носителя и катализатора на нх физико-химические свойства и каталитическую активность. Условия термообработки значительно изменяют физическое и химическое состояние компонентов катализатора, что связано с химическим взаимодействием исходных соединений платины, носителя и промоторов на различных стадиях термообработки. Катализатор изомеризации парафиновых углеводородов должен обладать сильными кислотными свойствами, обеспечивающими высокую скорость протекания реакции изомеризации, в сочетании с гидрирующими свойствами, от которых зависит стабильность его работы в процессе. [c.50]


    Многие соединения платины, кобальта и других переходных металлов имеют необычные эмпирические формулы и часто ярко окрашены. Они называются координационными соединениями. Их главным отличительным признаком является наличие двух, четырех, пяти, шести, а иногда большего числа химических групп, расположенных геометрически правильно вокруг иона металла. Такими группами могут быть нейтральные молекулы, катионы или анионы. Каждая группа может представлять собой независимую структурную единицу, но нередки и такие случаи, когда все группы связаны в одну длинную, гибкую молекулу, свернувшуюся вокруг атома металла. Координированные группы сушественно изменяют химические свойства металла. Окраска таких соединений позволяет судить об их электронных энергетических уровнях. [c.205]

    Определение химического состава. Массовую долю платины определяют по методу, основанному на взаимодействии платинохлористоводородной кислоты с хлоридом олова с образованием комплекса, имеющего характерное поглощение света отклонение от среднего арифметического трех параллельных определений не более 0,006% абс. [c.77]

    Наиболее важное значение при работах по химическому анализу имеет стеклянная посуда. Кроме нее, применяют также посуду и приборы из фарфора, кварца, платины, серебра и других материалов. [c.44]

    Материалы посуды и аппаратуры. В качестве материалов посуды и аппаратуры при работе с чистыми веществами используют платину, химически стойкое, в основном кварцевое, стекло [213, 668], графит и углеграфитовые материалы [415], а также синтетические органические полимеры — полиэтилен [905], фторопласты [868], некоторые другие пластмассы. [c.333]

    Палладий обладает ценным для электровакуумной техники свойством поглощения водорода, хорошей проницаемостью. Коэффициент поглощения водорода доходит до 850, Т. е. единица объема палладия поглощает 850 объемных единиц водорода. Платина — химически стойкий и не соединяющийся с кислородом металл. Хорошо поддается обработке вытягивается в очень тонкие нити и ленты. Применяется для термопар в паре с платинородием, выдерживающим температуру до 1600° С. [c.271]

    Сдвиг потенциала на 0,710 в в сторону положительных значений (недонапряжение) объясняется тем,что полоний образует с платиной химическое соединение или сплав. Это соединение образуется постепенно, т. е. происходит как бы увеличение прочности связи полония с платиной с течением времени. Количество полония, которое можно электрохимически снять с платины, резко меняется в зависимости от времени, протекшего от момента выделения полония до начала его растворения. Свежеосажденный полоний [18] растворялся на 74% за 1 ч, а с электрода, хранившегося в течение 30 суток, не только не удалось растворить часть полония, но даже, наоборот, на нем выделилось дополнительное количество полония. [c.197]

    По отношению к кислотам и щелочам никель ведет себя подобно железу и кобальту. Палладий и платина химически очень устойчивы и в реакции вступают лишь при высокой температуре (часто при температуре красного каления) и в мелкораздробленном состоянии. Получающ,иеся [c.618]

    Фторопласт-4 — рыхлый, волокнистый, тонкоизмельченный белый порошок, не смачивается водой и не набухает в ней. По химической стойкости он превосходит все известные материалы, включая золото и платину, не растворяется ни в одном известном растворителе. Фторопласт-4 работает в диапазоне температур —269—260° С. Пленка его сохраняет гибкость при температуре ниже —100° С и не становится хрупкой в среде жидкого гелия. [c.207]

    Высокое значение теплоты адсорбции показывает, что кислород связывается с платиной химически, образуя поверхностные соединения. [c.111]


    Каталитическая активность хлорированного окснда алюминия. Хлорированный т -оксид алюминия способен изомеризовать н-бутан в отсутствие платины и в отсутствие водорода (табл. 2.13). Замена водорода гелием в качестве газа-носителя в реакции изомеризации не изменила начальной изомеризующей активности катализатора. Наиболее глубоко изомеризация н-бутана протекала в отсутствие газа-носителя. Присутствие платины в катализаторе несколько снижает его активность в реакции изомеризации н-бутана. Исследования поверхности у- и т -оксида алюминия до и после хлорирования четыреххлористым углеродом различными физико-химическими методами позволили прийти к ряду заключений, которые в свою очередь привели к определенным выводам о природе активности хлорированного т -оксида алюминия. [c.72]

    Впрочем существует ряд указаний 11а то, что, например, платина химически взаимодействует с кристаллами галогенидов щелочных металлов начиная с 200° С [20]. [c.34]

    Направление научных исследований добыча и плавка, получение и очистка металлов РЬ, Sn, Sb, Zn, Mg, Ti, Zr, Al, Ni, o, Au, Ag, Pt, U и их сплавов химические вещества, в состав которых входят свинец, титан, цирконий, серебро, золото, платина химические соединения для керамической промышленности и огнетушения полиэтиленовые капсулы химические соединения, используемые при добыче и дальнейшей обработке нефти краски и лаки химические вещества для аккумуляторных батарей. [c.159]

    Оствальд был среди тех европейских ученых, которые открыли и оценили работы Гиббса. В 1892 г. он перевел статьи Гиббса по термодинамике на немецкий язык. Оствальд почти сразу же начал применять теории Гиббса при изучении катализа. Катализ (термин, предложенный Берцелиусом в 1835 г.) — изменение скорости химической реакции в присутствии небольших количеств веществ (катализаторов), которые не принимают видимого участия в реакции. Так, в 1816 г, Дэви установил, что порошкообразная платина [c.114]

    Иридии отличается от платины очень высокой температурой плавления и ен е большей стойкостью к различным химическим воздействиям. На иридий не действуют ин отдельные кислоты, ин царская водка. Кроме того, иридий значительно превосходит платину своей твердостью. [c.700]

    С соответствующими металлами кобальт, родий и иридий образуют твердые растворы и интерметаллические соединения, что определяет физико-химические и механические свойства их сплавов. Особо широко используются кобальтовые сплавы. Многие из них жаропрочны и жаростойки. Например, сплав виталлиум (65% Со, i8% Сг, 3% Ni и 4% Мо), применяемый для изготовления деталей реактивных двигателей и газовых турбин, сохраняет высокую проч-I ость и практически не подвергается газовой коррозии вплоть до 800—900°С. Имеются также кислотоупорные сплавы, не уступающие платине. Кобальтовые сплавы типа алнико (например, 50% Fe, 24% Со, 14% Ni, 9% А п 3% Си) применяются для изготовления постоянных магнитов. Для изготовления режущего инструмента важное значение имеют так называемые сверхтвердые сплавы, представляющие собой сцементированные кобальтом карбиды вольфрама (сплавы ВК) и титана (сплавы ТК). Большое значение имеет кобальт как легирующая добавка к сталям. [c.596]

    В это же время Штаудингер и Фрич гидрировали каучук в присутствии платиновой черни, в отсутствии растворителя, под давлением 93— 102 ат, при температурах 270—280° в течение 10 час. Никель действует так же, как и платина, но гидрирование идет не столь быстро и полно. Полученный ими гидрокаучук представлял бесцветную, прозрачную, твердую массу он не обладал эластическими свойствами исходного каучука и имел химические свойства насыщенных углеводородов. При пиролизе гидрированного каучука образовались олефины, из которых [c.218]

    Кинетика изомеризации парафиновых углеводородов. Во всех работах, посвященных кинетике изомеризации парафиновых углеводородов на бифункциональных катализаторах [19, 21, 24, 27-36], за исключением [11], стадией, лимитирующей общую скорость реакции изомеризации, считается алкильная перегруппировка карбкатионов. Эта точка зрения подтверждается данными о селективном действии различных промоторов и ядов на металлические и кислотные участки катализатора [19, 30]. Серии опытов по влиянию фтора, натрия, железа и платины на активность алюмоплатиновых катализаторов в реакции изомеризации к-гексана проводились при 400 °С, давлении 4 МПа и изменении объемной скорости подачи и-гексана от 1,0 до 4,0 ч [30]. Опыты на платинированном оксиде алюминия, промотированном различными количествами фтора — от О до 15% (рис. 1.7), показали, что по мере увеличения количества фтора в катализаторе до 5% наблюдался значительный рост его изомеризу-ющей активности поскольку удельная поверхность катализатора не подвергалась заметным изменениям, рост каталитической активности объясняется изменением химических свойств активной поверхности, а именно усилением кислотности. [c.17]

    Введение 0,02—2,5% натрия приводит к снижению изомеризующей и гидрирующей активности катализатора (рис. 2.3). Полученные зависимости свидетельствуют об одинаковом влиянии на состояние платины добавок, противоположным образом влияющих на кислотность катализатора (фтор и натрий), и могут быть объяснены изменением химического состояния платины за счет взаимодействия ее с фтором и натрием, следствием чего является снижение доли металлической платины и изменение ее каталитических и адсорбционных свойств. [c.48]

    Ввиду тугоплавкости и высокой химической стойкости платины из нее изготовляют лабораторную посуду тигли, чашки, лодочки и т. п. [c.698]

    Характерной особенностью перечисленных элементов является недостроенность их электронных d-оболочек, определяющая химические и многие физические свойства этих элементов. Для этих элементов характерно, что переход электронов из внещних с -оболочек во внешнюю s-оболочку (или наоборот) приводит к возникновению свободных валентностей. Например, для платины переход из считающегося основным состояния 5 i 6s2 3 состояние 5ii 6s приводит к образованию двух свобод ных валентностей (два неспаренных электрона). [c.363]

    Какие же вещества являются элементами Первыми правильно установленными элементами были металлы-золото, серебро, медь, олово, железо, платина, свинец, цинк, ртуть, никель, вольфрам, кобальт, И вообще из 105 известных к настоящему времени элементов только 22 не обладают металлическими свойствами. Пять неметаллов (гелий, неон, аргон, криптон и ксенон) были обнаружены в смеси газов, остающейся после удаления из воздуха всего имеющегося в нем азота и кислорода. Химики считали эти благородные газы инертными до 1962 г., когда было показано, что ксенон дает соединения со фтором, наиболее активным в химическом отнощении неметаллом. Другие химически активные неметаллы представляют собой либо газы (например, водород, азот, кислород и хлор), либо хрупкие кристаллические вещества (например, углерод, сера, фосфор, мыщьяк и иод). При обычных условиях лишь один неметаллический элемент-бром-находится в жидком состоянии, [c.271]

    До Менделеева полагали, что атомная масса платины, Рс, больше, чем у золота, Аи. Но Менделеев придерживался иной точки зрения, основываясь на химических свойствах этих двух металлов и месте, которое он отвел им в своей таблице. Новые измерения, вдохновленные работами Менделеева, показали, что атомные массы составляют 198 для платины и 199 для золота, что заставляло поместить в таблице платину раньше золота и под палладием, Рс1, который более всех других элементов напоминает платину. [c.310]


    Скорость процесса в целом определяется скоростью наиболее медленной стадии, поэтому транспорт может определять скорость химического превращения. Впервые это было отмечено Нернстом при изучении окисления аммиака на платине. [c.267]

    В ионе [Р1С14] атом платины химически насыщен за счет акцептирования от двух ионов хлора двух электронных пар. В результате атом платины образует с участием своих яр -орбиталей четыре атомные связи, нз которых две возникли по донорно-акцепторному механизму  [c.51]

    В ионе [Р1С14] атом платины химически насыщен в результате установления двух ковалентных связей с двумя атомами хлора и за счет акцептирования от двух ионов хлора двух электронных пар. В результате атом платины образует с участием своих йзр -орбита-лей четыре атомные связи, из которых две возникли по донорно-ак-цепторному механизму  [c.63]

    Анализ существующих тенденций в разработке новых катализаторов риформинга показывает, что прогресс в повыщении технического уровня промышленных катализаторов состоит в переходе от биметаллических к триметал-лически.м системам, химической модификации и оптимизации текстурных параметров носителя, совершенствовании технологии производства в части использования новых материалов и оборудования, оптимизации стадий прокаливания, восстановления и сульфидирования катализаторов. Разработка новых перспективных версий катализаторов риформинга в Омско.м филиале ИК СО РАН основывается на фундаментальных знаниях о свойствах атомов платины в. металлическо.м и ионном состояниях [77] и, соответственно, состоит в оптимизации состояния платины, химического состава и текстуры носителя. [c.37]

    Это типичный случай большинства простых реакций, протекающих в растворах. Если же реакция происходит только на поверхности между двумя фазами, то говорят, что такая реакция гетерогенна. Имеется очень много примеров реакций этого типа среди них можно отметить контактный процесс окисления ЗОг кислородом на поверхности платино-асбестового катализатора и гидрогенизацию ненасыщенных соединений в жидких суспен-гшях никелевого катализатора Ренея (N 02). Кроме этих двух категорий реакций, имеется группа реакций, так называемых цепных процессов, скорость которых может зависеть не только от химического состава, но также от размера и геометрии поверхности, ограничивающей реагирующую систему. Хотя такие реакции классифицировались как гетерогенные, это определение не точное, поскольку реакция не ограничивается поверхностными слоями скорее всего поверхность лишь способствует процессам, происходящим в объеме газовой фазы или изменяет их. Типичными примерами таких реакций являются цепное окисление водорода, окиси углерода, углеводородов и фосфора. Большинство изученных газофазных реакций относится к этой категории. [c.17]

    Образование донорно-акцепторной связи протекает по механизму, отличающемуся от механизма образования ковалентной связи, но приводит к такому же результату. Поэтому в ионе аммония все четыре связи (между атомом азота с участием его одной 5- и трех р-орбиталей и тремя атомами и одним ионом водорода с участием их з-орбиталей) равноценны. Это относится и к четырем связям в ионе Шр41. В ионе [Р1С14] атом платины химически насыщен за счет акцептирования от двух ионов хлора двух электронных пар. В результате атом платины образует с участием своих зр -орбиталей четыре атомные связи, из которых две возникли по донорно-акцепторному механизму  [c.55]

    Платина. Вследствие очень малой химической активности и высокой температуры плавления (1770°С) платина является ценнейшим материалом для изготовления различных химических приборов и сосудов (тиглей, чашек, электродов для электрогра-виметрических определений и т. д.). Однако, несмотря на большую устойчивость платины, хлор, бром, царская водка (смесь концентрированных HNO3 и НС1), едкие щелочи ее разрушают. Платина об )азует сплавы со свинцом, сурьмой, мышьяком, оловом, серебром, висмутом, золотом и др. Соединения указанных элементов в платиновой посуде нагревать нельзя. [c.45]

    Основной целью многочисленных исследований эффективности очистки сточных вод целлюлозно-бумажной промышленности с помощью полупроницаемых мембран было получение необходимых данных для инженерных расчетоп установок очистки и концентрирования сильно разбавленных сточных вод. Оценка эффективности очистки различных типов сточных вод заключалась в определении химического потребления кислорода (ХПК), биохимического потребления кислорода (13ПК), окисляемости раствора, стенени удаления ионизированных солен п виде хлоридов из стоков после отбелки и сухого остатка с подразделением на органическую и минеральную части, значений pH в спектрофотометрическом определении оптической плотности или цветности в градусах платино-кобальтовой шкалы как меры концентрации лигнина. [c.309]

    Основная масса выплавляемого никеля (около 80%) используется для получения никелевых сплавов и легированных сталей (нержавеющих, бронебойных, жаростойких и др.). Из никеля изготавливают специальную аппаратуру химических производств. Он применяется также для декоративно-защитных покрытий на других л еталлах. Палладий и платина используются для изготовления коррозионностойкой лабораторной посуды, аппаратов и приборов хи-л ических производств, для термометров сопротивления и термопар, i также электрических контактов. Из платины изготавливают нерастворимые аноды, например, для электрического производства Iадсерной кислоты и перборатов. Палладий и платина применяются Е ювелирном деле. [c.608]

    При физико-химическом анализе твердых сплавов платины и медн составам Р1Си и Р1Си5 отвечают ясно выраженные сингулярные точки на кривых зависимости термозлектродвижущей силы от состава (рис. XIV, 13,6) и удельною электропроводности от состава (рис. IXV, 13,в). При температурах, превышающих соответственно 812 и 645 °С, эти сингулярные точки исчезают. [c.414]

    Как теоретически, так и практически больщой интерес представляет процесс электрохимического выделения кислорода этот процесс вследствие высокой химической активнссти кислорода осложняется образованием на металлах различных окислов даже на платине, поэтому выделение газообразного кислорода происходит с окисленной поверхности. То, что до сих пор нет достаточно обоснованной теории кислородного перенапряжения, объясняется, очевидно, главным образом сложностью процесса выделения кислорода. Наиболее достоверно предположение о том, что самой медленной стадией (лимитирующей стадией) является распад высших металлических окислов переменного состава по уравнению [c.629]

    Политетрафторэтилен выпускается в виде пластмассы, назы ваемой тефлоном, или фторопластом. Весьма стоек по отношеник к щелочам и концентрированным кислотам и другим реагентам По химической стойкости превосходит золото и платину. Негорюч, обладает высокими диэлектрическими свойствами. Применяется В [имическом машиностроении, електротехнике. [c.502]

    В химической промышленности платина применяется для изго-топления коррозиониостойких детален аппаратуры. Платиновые аноды используются в ряде электрохимических производств (производство надсерной кислоты, перхлоратов, перборатов). Широко применяется платина как катализатор, особенно при проведении окислительно-восстановительных реакций. Она представляет собой первый, известный еще с начала XIX века гетерогенный катализатор. В настоящее время платиновые катализаторы применяются в производстве серной и азотной кислот, при очистке водорода от нрнмссей кислорода и в ряде других процессов. Из платины изготовляют нагревательные элементы электрических печей и приборы для измерения температуры (термометры сопротивления и термопары). В высокодисперспом состоянии платина растворяет значительные количества водорода и кислорода. На ее способности растворять водород основано применение платины для изготовления водородного электрода (см. стр. 281). [c.698]

    Обнаружено, что некоторые комплексы платины являются активными противораковыми препаратами. К их числу относятся 1 ис-Р1(ННз)2С14, 1/ис- 1 (ННз)2С12 И цис-Р1 (сп)О2 (ни один из транс-изомеров не эффективен в этом отношении). Воспользуйтесь теорией валентных связей для объяснения диамагнетизма этих комплексов. Являются ли эти комплексы внутриорбитальными или внешнеорбитальными Какие гибридные орбитали используются для образования химических связей в этих комплексах  [c.250]

    Для механической очистки широко применяются отстаивание, фильтрация, флотация. Этими методами удаляются в основном взвешенные вещества, причем на контактных осветителях эффект очистки составляет 98—99%. Биологическая очистка позволяет снизить БПК на 88— 90%. Применение химической очистки после биологической снижает цветность воды с 2000—2500° по платино-кобальтовой шкале до 50— 100°, а БПКз —с 10—25 мг О2 до 3—5 мг О2 на 1 л. Одним из недостатков химической очистки является образование большого количества осадка, обезвоживание которого представляет определенную трудность. Кроме того, метод химической очистки стоков требует больших капитальных и эксплуатационных затрат. [c.308]


Смотреть страницы где упоминается термин Платина химические: [c.36]    [c.196]    [c.346]    [c.317]    [c.486]    [c.53]    [c.377]    [c.539]    [c.694]    [c.699]    [c.53]   
Основы общей химии Том 2 Издание 3 (1973) -- [ c.316 , c.378 , c.381 , c.383 , c.495 ]




ПОИСК







© 2024 chem21.info Реклама на сайте