Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Плутоний химические

    Существенный вклад внесла аналитическая химия в решение такой важной проблемы современной науки, как синтез и изучение свойств трансурановых элементов. Предсказание химических свойств трансурановых элементов оказалось более сложным, чем для элементов, входящих в периодическую систему в ее старых границах, так как не было ясности в распределении новых элементов по группам. Трудности усугублялись и тем, что до синтеза трансурановых элементов торий, протактиний и уран относились соответственно к IV, V и VI группам периодической системы в качестве аналогов гафния, тантала и вольфрама. Неправильное вначале отнесение первого трансуранового элемента № 93 к аналогам рения привело к ошибочным результатам. Химические свойства нептуния (№ 93) и плутония (№ 94) показали их близость не с рением и осмием, а с ураном. Было установлено, что трансурановые элементы являются аналогами лантаноидов, так как у них происходит заполнение электронного 5/- слоя, и, следовательно, строение седьмого и шестого периодов системы Д. И. Менделеева аналогично. Актиноиды с порядковыми номерами 90—103 занимают места под соответствующими лантаноидами с номерами 58—71. Аналогия актиноидов и лантаноидов очень ярко проявилась в ионообменных свойствах. Хроматограммы элюирования трехвалентных актиноидов и лантаноидов были совершенно аналогичны. С помощью ионообменной методики и установленной закономерности были открыты все транс-кюриевые актиноиды. Рекордным считается установление на этой основе химической природы элемента 101 — менделевия, синтезированного в начале в количестве всего 17 атомов. Аналогия в свойствах актиноидов и лантаноидов проявляется также в процессах экстракции, соосаждения и некоторых других. Экстракционные методики, разработанные для выделения лантаноидов, оказались пригодными и для выделения актиноидов. [c.16]


    В последние годы экстракция нашла широкое применение для разделения металлов и получения их в состоянии высокой чистоты. Во многих случаях она является единственным методом, который удается применить в промышленном масштабе, например, при очистке металлов, служащих топливом для атомных реакторов. Это относится как к металлам природного происхождения (уран, торий), так и к являющимся продуктами облучения (плутоний). С помощью экстракции разделяются также и другие металлы из семейства актинидов. С успехом решено разделение циркония и гафния, а также тантала и ниобия—металлов, встречающихся в природе всегда парами и, благодаря большому химическому подобию, трудных для разделения другими методами. Экстракцией можно выделить из отбросных продуктов промышленности (шлак, зола, шлам) содержащиеся в них следы различных металлов, имеющих важное техническое применение (германий, индий, церий и др.). [c.424]

    Химия плутония. Химические свойства плутония были весьма широко изучены рядом исследователей в США и Канаде. Необходимость такого исследования в связи с работами по атомной энергии (Манхеттенский проект) привела к тому, что химические свойства плутония теперь известны лучше, чем свойства многих обычных элементов. [c.182]

    Наиболее полно изучены окислительно-восстановительные свойства ионов плутония. Химическое поведение плутония сейчас известно лучше, чем поведение многих элементов периодической системы. Повышенный интерес к плутонию связан, с одной стороны, с его значением как ядерного горючего, с другой — с чрезвычайно сложными и многообразными свойствами его соединений. Эта сложность проявляется прежде всего в том, что благодаря близости окислительно-восстановительных потенциалов пар ионов плутония эти ионы могут находиться в равновесии друг с другом в водном растворе. Кроме того, иопы промежуточных степеней окисления —- Ри + и РиО+ — [c.8]

    Цепная реакция протекает определенное время. В результате в урановых стержнях образуется небольшое количество плутония. По мере накопления продуктов распада и зз реакции в реакторе постепенно затухают. Образовавшийся в урановых стержнях плутоний химически отделяют от урана, не вступившего в реакцию с нейтронами. Энергия, выделяемая при рабо- [c.33]

    Известно, что соосаждение было использовано как основной метод для изучения химических свойств нептуния и плутония [см. Г. С и б о р г. Успехи химии, 15. 420 (1946)]. [c.58]

    Металлический плутоний путем ряда довольно сложных химических операций выделяют из урана, подвергшегося облучению нейтронами. На атомных электростанциях, наряду с электроэнергией, производятся значительные количества плутония. [c.429]

    Электродные потенциалы изученных в химическом отношении актиноидов (тория, урана, нептуния и плутония) изменяются от —1,6 до —1,4 в. Поэтому кислоты, как правило, энергично растворяют их. Азотная кислота растворяет куски урана о умеренной скоростью, не при растворении в ней тонко измельченного урана может произойти сильнейший взрыв. [c.65]

    Из графита изготовляют различные детали машин подшипники, поршневые кольца и др. В связи с термической и химической устойчивостью графит применяют как материал для аппаратов химических и металлургических производств — теплообменников, тиглей для тугоплавких сплавов, а также для рулей реактивных двигателей. В ядерной технике (например, в производстве плутония из урана) графит используют как замедлитель нейтронов. [c.199]

    Выход плутония был в 100 раз выше, чем по прежней методике, теперь можно было изучить его химические свойства. [c.226]

    Торий, уран и плутоний находят значительное применение в виде ядерного топлива в ядерных реакторах. Плутоний получается в результате ядерных превращений урана. Выделение плутония из реактора, отделение его от урана и других образующихся в реакторе элементов представляет собой сложную совокупность химических реакций, блестяще разработанную трудами многих химиков и радиохимиков. [c.289]


    Разделение урана, нептуния и плутония основано на различии их химических свойств и значительно легче осуществляется, чем разделение изотопов урана. Поэтому роль плутония в ядерной технике неуклонно возрастает. Металлический плутоний, как уран и нептуний, получают путем восстановления РиР., или РиР барием, кальцием или литием при высокой температуре. [c.443]

    Графитовые материалы имеют высокий предел прочности при сжатии (500—400 кГ см -) низкое удельное электросопротивление (5-10-" —6-10 ом/см) высокую теплопроводность (80— 180 ккал/м - ч- град)-, низкий коэффициент термического линейного расширения (2-10 — 3-10 ). Графит обладает высокой термической стабильностью при температурах около 3000°С в восстановительных и нейтральных газовых средах, химической стойкостью в кислых и щелочных средах, очень низкой реакционной способностью в окислительной среде. Эти свойства графита используют в химических процессах, в газовых турбинах и в реактивной технике [245]. Кроме того, исключительно чистый графит обладает свойством замедлять движение быстрых нейтронов. Это качество графита используют в атомных реакторах для обеспечения протекания самоподдерживающейся цепной реакции, когда в качестве ядерного горючего используется уран IJ235 или плутоний [178, 293]. [c.68]

    Выделение плутония из облученного нейтронами урана — сложный процесс, состоящий из ряда химических операций. [c.451]

    При повышении температуры а-олово, представляющее собой полупроводник со структурой алмаза, переходит в металлическое белое олово, обладающее объемноцентрированной тетрагональной структурой. Сложные кубические структуры а- и Р-марганца, сложные структуры а- и Р-урана и нептуния, а-, р- и -плутония, имеющие отчетливо выраженные локализованные химические связи между атомами, переходят в ОЦК структуру, типичную для металлов причем у марганца и плутония этому переходу предшествует превращение в гранецентрированную кубическую (ГЦК) модификацию. У большинства полиморфных металлов низкотемпературная а-модификация имеет плотную [c.173]

    Урановые стержни периодически извлекаются из реактора (с заменой новыми) и подвергаются сложной химической переработке для выделения образовавшегося плутония. Так как выход плутония невелик, он обходится в конечном счете очень дорого. Однако затраты на производство плутония все же меньше, чем па выделение эквивалентного количества из изотопной смеси. [c.527]

    С помощью ядерных реакций получают различные химические элементы, в том числе синтезируют и новые. Наиример, элемент кюрий был получен бомбардировкой изотопа плутония Pu ускоренными Частицами  [c.46]

    Этот способ наиболее эффективен для получения многих трансурановых элементов. Так, например, плутоний в настоящее время получается в больших количествах. Этот элемент — один из главных продуктов атомной промышленности и изучен значительно лучше многих давно известных химических элементов. Другие трансурановые элементы получены в гораздо меньших количествах. [c.93]

    Естественные (природные) радионуклиды либо содержатся как химические элементы в земной коре (уран, торий) или в атмосфере (радон), либо образуются там в результате природных ядерных реакций (уран-233, плутоний-239, нептуний-237) и ядерных реакций, инициированных космическим излучением (тритий, углерод-14, аргон-41). Осаждаясь атмосферными осадками и вымываясь поверхностными и грунтовыми водами, естественные радионуклиды попадают в гидросферу. [c.307]

    Нейтроны действуют практически на все химические элементы с образованием радиоактивных изотопов, большинство из которьк имеет малые периоды полураспада и не накапливается в земной коре. Однако некоторые радиоактивные изотопы находятся в земной коре Ик енно благодаря ядерным реакциям химических элементов с нейтронами. Так, из дейтерия и лития образуется тритий. Из урана-238— плутоний-239 с периодом полураспада, Т д 2,4 10 лет  [c.310]

    Су1я по свойствам нептуния и плутония, полагали, что, видимо, эта группа начинается с урана. Для ее членов — уранидов — самая характерная валентность б-Ь. Именно эту валентность обычно проявляли элементы № 93 и 94. А раз так, то и новый элемент № 95 должен быть шестивалентным. Следовательно, выделить его из массы плутония химическими способами окажется в высшей степени сложно и надежд на химическую идентификацию нет. [c.407]

    Как И В случае лантаноидов, у элементов семейства актиноидов происходит заполнение третьего снаружи электронного слоя (подуровня 5/) строение же наружного и, как правило, предшествующего электронных слоев остается неизменным. Это служит причиной близости химических свойств актиноидов. Однако различие в энергетическом состоянии электронов, занимающих 5/- и 6 /-под-.уровни в атомах актиноидов, еще меньше, чем соответствующая разность энергий в атомах лантаноидов. Поэтому у первых членов семейства актиноидов 5/-электроны легко переходят на подуровень и могут принимать участие в образовании химических связей. В результате от тория до урана наиболее характерная степень окисленности элементов возрастает от - -А до +6. При дальнейшем продвижении по ряду актиноидов происходит энергетическая стабилизация 5/-С0СТ0ЯНИЯ, а возбуждение электронов на 6 -подуро-вень требует большей затраты энергии. Вследствие этого от урана до кюрия наиболее характерная степень окисленности элементов понижается от +6 до (хотя для нептуния и плутония получены соединения со степенью окисленности этих элементов и 4-7). Берклий и следующие за ним элементы во всех своих соединениях находятся в степени окисленности +3. [c.644]

    ПЛУТОНИЙ (Plutonium, от названия планеты Плутон) Ри — радиоактивный химический элемент семейства актиноидов 1П группы 7-го периода периодической системы элементов Д. Н. Менделеева, п. н. 94, массовое число наиболее долгоживущего изотопа 244, стабильных изотопов не имеет. Впервые П. получен в 1940 г. Г. Сиборгом с сотрудниками. Наиболее важен изотоп зврц = 24 ООО лет), который может использоваться для получения ядерной энергии и в атомных бомбах как взрывчатое вещество. П.— первый искусственный элемент, который начали получать в промышленных масштабах. Известно несколько оксидов П., а также большое количество интерметаллических соединений, сплавов. Элементарный П.— металл серебристо-белого цвета, т. пл. 637° С. П. весьма токсичен. При попадании в организм П. задерживается в нем, концентрируясь в костях, вызывает тяжелые нарушения деятельности организма. [c.194]

    Радиоактивный э.гемент — химический элемент, все известные изотопы которого радиоактивны. Сюда относятся как природные элементы (полоний, астат, франций, радий, уран и др.), так и искусственно полученные (технеций, прометий, плутоний, фермий, менделевий и др.). [c.378]

    В течение последних нескольких лет синтезировано 10 новых элементов с 2 > 92 (трансурановые элементы) и около 70 изотопов их. Сюда принадлежат следующие элементы нептуний Мр (2 = 93), плутоний Ри (2 = 94), америций Ат (2 95), кюрий Ст (2 = 96), берклий Вк (2 -- 97), калифорний СГ (2 = 98), эйнштейний Ез (2 = 99), фермий Рт (2 = 100) и менделевий М(1 (2 = 101). Некоторые из них (Ыр, Ри, Ат и др.) получены путем нейтронного облучения исходных ядер, другие (например, Ез и Рт) впервые были обнаружены в продуктах термоядерного взрыва. Третьи синтезированы путем облучения тяжелых ядер (и, Ри и др.) многозарядными ядрами гелия (а-частииами), углерода, азота или кислорода. Так, бомбардировкой ядрами атома кислорода по реакции Ри94 (08 , 4п)102 з синтезирован элемент с порядковым номером 2 = 102. Этот элемент назван нобелием с химическим символом Ыо .  [c.390]


    Плутоний (Ри) — серебристо-белый металл, известный в виде нескольких аллотропических модификаций. Образует сплавы со многими металлами и большое число интерметаллических соединений. Дает ряд химических соединений, в которых он находится в различных валентных состояниях (-НЗ, +4, +5, +6). Например, нитраты плутония Ри(МОз)4 и Pu02(N0a)2 — соли, хорошо растворимые в воде. [c.428]

    ПЯВ - техногенное геологическое явление, которое вызвано мгновенным выделением энергии в ограниченном пространстве земной коры в результате реакции деления урана или плутония и возбуждает сложную цепь а) первичных радиационных, плазменных, физикомеханических, термических и химических процессов продолжительностью от долей секунд до нескольких минут б) вторичных геологогеофизических и геохимических процессов длительностью до многих десятилетий и сотен лет. Прогрессирующее разрушение недр, инициированное ПЯВ, приводит к обособлению нового структурного -элемента, развитие которого осло.жняет естественный ход эволюции ранее сформированных природных тектонических структур земной коры и других оболочек географической среды. [c.67]

    Хроматографические методы занимают особое место среди физико-химических методов анализа, являясь прежде всего универсальным способом разделения элементов. Они выгодно отличаются от всех других известных методов разделения высокой специфичностью (избирательностью действия), позволяют осуществить разделение весьма близких по свойствам неорганических или органических веществ. Так, например, хроматографическим путем разделяют смеси катионов металлов щелочной группы, щелочноземельных металлов, редкоземельных элементов, элементов-двойников, таких как цирконий и гафний разделяют смеси геометрически изомерных комплексных соединений (например, цис-транс-язомерных комплексов платины или кобальта) отделяют микроколичества трансплутониевых элементов от основной массы урана или плутония, а также от продуктов деления разделяют смеси анионов галидов, кислородных кислот галогенов, фосфорных кислот, аминокислот, смеси органических соединений, являющихся пред- [c.9]

    Нынешняя (для середины 80-х годов) искусственная верхняя граница периодической системы — достигнутый предел синтеза — отвечает значению 2=108. Первые трансурановые элементы — Np, Pu, Am и m сейчас уже можно получить в больших количествах в результате облучения урана и плутония в промышленных энергетических реакторах. Даже америций и кюрий ныне выделяют килограммами. Транскюриевые элементы Вк, f и Fm в виде изотопов Вк, 253 д 2S7p извлекаются химическими [c.99]

    В химических соединениях постоянного состава плутоний проявляет степени окисления +3, +4, +5 и +6. Распространены нитраты плутония (IV) Pu(NOз)4 или РиОа(КОз)2. [c.451]

    Превращения в металлических и керамических материалах в результате ядерных реакций при облучении нейтронами приводят к образованию атомов примесей. Как правило, это не очень существенно, за исключением случаев, когда образуются газы (например, при реакции нейтронов с бериллием образуется гелий). Газы в решетке могут накапливаться, образуя пузырьки, и приводить к сильному распуханию [31 ]. Особенно сильное радиационное распухание (свеллинг) наблюдается при делении урана и плутония. Оно является результатом накопления осколков деления, значительная часть которых (около 30% выгоревших атомов) состоит из газовых атомов, в первую очередь криптона и ксенона. Это явление в настоящее время служит главным препятствием, ограничивающим использование металлического ос-урана в качестве топлива в реакторах, где требуются высокая степень выгорания и работа в условиях повышенных температур. В связи с этим охотнее пользуются двуокисью урана (иОа). Двуокись урана — химически довольно стойкое вещество, слабо реагирует с водой, совместима (не вступает в химические реакции) со многими конструкционными материалами (тантал, молибден, нержавеющие стали и др.), выдерживает нагрев до высоких температур. Главным же достоинством плотной спеченной иОа является ее способность довольно прочно удерживать продукты распада урана, в том числе газовые атомы, без значительного изменения внешних размеров. 212 [c.212]

    С помощью физико-химического анализа и иных методов исследования жидких систем и растворов был открыт громадный по числу представителей и разнообразию форм мир химических соединений, существующих только в растворах. Сегодня сольваты — такие же равноправные химические соединения, как и те, которые химики осаждают, перекристаллизовывают, перегоняют и экстрагируют. А что до того, что их нельзя подержать в руках , то не отрицаем же мы существование далекого Плутона только потому, что пока никому из землян не удалось оставить следы на его пыльных тропинках . [c.28]

    Исходя из духа русской химической иомеиклатуры, 93-й и 94-й влементы правильнее было бы назвать нептуном и плутоном. [c.104]

    Трансурановые элементы (заурановые элементы) — радиоактивные химические элементы, расположенные вслед за ураном в периодической системе Д. И. Менделеева. Атомные номера 93. Большинство известных трансурановых элементов (93—103) принадлежит к числу актиноидов. Все изотопы их имеют период полураспада значительно меньший, чем возраст Земли. Поэтому Т. э. практически отсутствуют в природе и получаются искусственно посредством различных ядерных реакций. Первый из трансурановых элементов нептуний Np (п. н. 93) был получен в 1940 г. бомбардировкой урана нейтронами. За ним последовало открытие плутония (Ри, п. н. 94), америция (Ага, п. н. 95), кюрия (Сга, п. н. 96), берклия (Вк, п. н. 97), калифорния( f, п. н. 98), эйнштейния (Es, п. н. 99), фермия (Рш, п.н. 100), менделевия (Md, п. н. 101), нобелия (No, п. н. 102), лоуренсия (Lr, п. н. 103) и курчатовия (Ки, п. н. 104). Так же получены Т. э.с порядковым номером 105— 106. Более или менее полно изучены химические свойства Т. э. Криста.члографи-ческне исследования, изучение спектров поглощения растворов солей, магнитных свойств ионов и других свойств Т. э. показали, что элементы с п. н. 93—103 — аналоги лантаноидов. Из всех Т. э. наибольшее применение нашел Ри как ядерное горючее. [c.138]

    В некоторых случаях дифракция рентгеновских лучей может быть использована для определения абсолютной конфигурации оптически активных веществ. В 1951 г. Бижро, Пирдеман и ван Боммель изучили натриеворубидиевую соль (+)-винной кислоты с помощью дифракции рентгеновских лучей и нашли, что ее абсолютная конфигурация соответствует той, которая была произвольно выбрана Фишером из двух возможных энантиоморфных структур 100 лет назад. Дифракция рентгеновских лучей находит также широкое применение в неорганической химии при определении как структур, так и правильных формул многих гидридов бора и карбонильных комплексов металлов, которым ранее были приписаны ошибочные формулы. Во многих случаях дифракция является единственным практическим методом установления правильного состава соединений. При изучении искусственно полученных элементов— нептуния, плутония, кюрия и америция — стало возможным быстро устанавливать их чистоту и химический состав, используя чрезвычайно малые количества вещества и не разрушая образцы. [c.583]

    Большой интерес представляет поведение в почвах и водных экосистемах основных дозообразующих и относительно долгоживущих радионуклидов - Sr и а также изотопов плутония. В водной фазе почв, загрязненных выбросами из 4-го энергоблока, эти изотопы появляются в результате выщелачивания горячих частиц , состоящих в основном из топливного диоксида урана. Сам по себе UOj отличается высокой химической стабильностью по отношению к воде, но тем не менее под действием почвенных растворов частицы микронных размеров довольно быстро разрушаются и высвобождают продукты деления и активации. Если летом 1986 г. из проб грунта в 30-километровой зоне ЧАЭС почти не происходило выщелачивание урана при их обработке 6 н. раствором HNOj и 10 %-м раствором Naj Oa, то в 1991 г. в этом же районе практически весь топливный уран был в водорастворимой форме. [c.272]


Смотреть страницы где упоминается термин Плутоний химические: [c.184]    [c.604]    [c.9]    [c.9]    [c.502]    [c.283]    [c.104]    [c.582]    [c.153]    [c.13]    [c.7]    [c.7]   
Основы общей химии Том 2 Издание 3 (1973) -- [ c.92 , c.96 ]




ПОИСК





Смотрите так же термины и статьи:

Плутоний



© 2025 chem21.info Реклама на сайте