Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Силы взаимодействия кулоновские

    Наконец, применение гель-хроматографии возможно и в том случае, когда все вещества анализируемой смеси обладают одинаковой молекулярной массой. Тогда в основе разделения лежит различие во взаимодействии анализируемых вешеств с фазой геля. Обычно рассматривают два вида взаимодействия кулоновское между заряженными молекулами разделяемой смеси и ионогенными группами в скелете геля и взаимодействие, связанное с дисперсионными силами взаимодействия между растворенными вещест-. вами и фазой набухшего геля. Этот вариант гель-хроматографии широко применяется для разделения смеси веществ низкой молекулярной массы. [c.226]


    Здесь qdq Dт — кулоновская сила взаимодействия заряда, расположенного на сфере, и элемента заряда йд, удаленного на расстояние г от центра сферы. В этих расчетах не принимались во внимание силы, действующие на близких расстояниях, но, так как проводится сравнение поведения двух растворителей, соответствующие члены в уравнении все равно сократились бы. [c.455]

    В работе [107] определялось сечение захвата для случая, когда меньшая из частиц радиусом Я 2 несет свободный заряд Q . Обе частицы проводящие. При расчетах не учитывалось молекулярное взаимодействие частиц и силы их гидродинамического взаимодействия. Сумма этих сил ранее определялась формулой (5.18). Электрические силы взаимодействия считались кулоновскими и определялись взаимодействием заряда Са с индуцированным зарядом на частице Я . Для сечения захвата было получено выражение [c.87]

    Например, энергия кулоновского взаимодействия обратно пропорциональна расстоянию между зарядами 17 = йвг/г. Если эту энергию разделить на расстояние между зарядами, то получим силу взаимодействия, отражаемую законом Кулона Г = 111 г = йй/г . [c.237]

    В реакциях (а) и (б) преобладают электростатические кулоновские силы взаимодействия, в реакции (в) — ковалентный характер молекулярного возмущения. [c.661]

    Капли, попадая в электрическое поле, поляризуются, и их форма приближается к эллипсоидальной (рис. 1.1). Соударение и слияние капель происходит за счет кулоновского взаимодействия противоположных по знаку поляризационных зарядов частиц, оказавшихся вблизи друг от друга. Из электростатики известно, что заряд поляризации qn = Еа . Следовательно, сила взаимодействия, определяющая сближение и слияние капель [c.8]

    У ионных кристаллов (рис. 1.9, 6 решетка построена из чередующихся ионов с противоположными зарядами, связь между которыми осуществляется за счет сил электростатического взаимодействия — кулоновских сил. Хотя энергия связи в решетке этого типа такая же, что и у атомного [составляет (8 — 12) X X 10 кДж/моль], прочность тел с этой структурой значительно ниже, так как в них связь рассеянная , ненаправленная. Поэтому, представители кристаллов такого типа хотя и обладают большой прочностью, высокой температурой плавления, малой летучестью, низкими тепло- и электропроводностями, но хорошо растворяются в полярных растворителях. Таковы неорганические соли и большинство минералов. [c.37]

    Проведенное рассмотрение показывает, что в более сложно организованной системе характер взаимодействия может существенно отличаться от простого кулоновского взаимодействия — в выражение для силы взаимодействия не входит заряд частиц, вместо него электрические свойства участников взаимодействия характеризуются дипольным моментом. Изменяется показатель степени в выражении для зависимости взаимодействия от расстояния. Однако природа взаимодействий остается прежней— это кулоновские взаимодействия между электрическими зарядами. [c.16]

    Нет оснований полагать, что между ионами в каком-либо растворе кулоновские силы отсутствуют. Но поскольку для воздуха D Ai Ij а для воды D 80, то при перенесении молекулы электролита из воздуха в воду сила взаимодействия между ионами, ее составляющими, падает в 80 раз. С точки зрения природы происходящих процессов это означает, что химическое сродство ионов между собой меньше, чем между ними и молекулами растворителя. [c.90]

    Допустим в качестве первого приближения, что потенциал парного взаимодействия ионов есть сумма потенциалов — отталкивания, связанного с короткодействующими валентными силами, и- кулоновского [c.316]

    Проведенное термодинамическое рассмотрение не дает представления о механизме процесса. Для этого мы можем привлечь известное уже нам понятие полярности, как меры интенсивности молекулярного силового поля. Молекула спирта, находящаяся на поверхности, втягивается в глубину объемной фазы слабее, чем молекула воды (поскольку взаимодействие вода — вода сильнее, чем вода — спирт) и, попав в поверхностный слой, окажется уже вытесненной из динамической решетки молекул воды в объемной фазе это приведет к обогащению поверхностного слоя спиртом. Наоборот, ионы, например Na+ или С1", будут втягиваться в объемную фазу сильнее, чем молекулы НгО, поскольку силы взаимодействия Na+—НгО больше, чем НгО — НгО. К этому добавляются еще силы кулоновского взаимодействия Na+ — Gl . В результате поверхностный слой обедняется электролитом. [c.83]


    Особенностью химических сил, характеризующих металлическую связь, является отсутствие направленности и насыщаемости, характерных для обычных химических сил при ковалентных связях и определяемых валентностью соответствующих атомов. В этом отношении металлическая связь приближается к ионной. Силы, связывающие атомы в жидком и твердом металле, электростатические, но по современным представлениям они определяются не только кулоновскими силами взаимодействия, но еще и особыми обменными и другими силами квантовомеханического происхождения. [c.126]

    Цепочка. Объясняется это тем, что в органической кислоте с ростом длины цепочки кулоновские силы взаимодействия между Н+-ионами и отрицательно заряженным концом молекулы увеличиваются. Н. А. Измайлов показал, что при переходе от растворителя к растворителю константы диссоциации кислот изменяются иногда в миллионы, а соотношения в силе кислот — в тысячи раз. [c.39]

    Когда электролиты, полностью диссоциированные в воде, растворяются в растворителях с низкой диэлектрической постоянной, кулоновское притяжение оказывается достаточным для образования ионных ассоциатов при предельно низких концентрациях ионов. Сила взаимодействия между ионами обратно пропорциональна диэлектрической постоянной среды (разд. 6.1). Таким образом, все электролиты являются слабыми электролитами в растворителях с низкой диэлектрической постоянной. К растворителям, играющим важную роль при изучении неводных растворов электролитов, принадлежат спирты, жидкий аммиак, диоксан, ацетон и другие кетоны, безводная муравьиная кислота и уксусная кислота, пиридин, некоторые амины и нитросоединения. [c.347]

    Наряду с получением общего рещения задачи определения сил взаимодействия двух проводящих частиц больщое значение имеет исследование асимптотического поведения сил на больщих и малых расстояниях между их поверхностями. Взаимодействие частиц на больших расстояниях в приближениях диполь-дипольного, диполь-кулоновского и кулоновского взаимодействий изучено достаточно полно [91]. Поэтому в этой области основным является вопрос о точности указанных приближений. Для случая малых расстояний между частицами силы электростатического взаимодействия изучены меньше. В следующих разделах будут рассмотрены два указанных предельных случая. [c.296]

    Расчитанная прочность в отличие от найденной из экспериментальных данных называется теоретической. Теоретическая прочность зависит от природы сил взаимодействия между частицами (ионная, ковалентная, металлическая связь и др.) и от структуры материала. Точный расчет значений теоретической прочности является весьма сложной задачей. Поэтому более или менее строгий расчет был проделан к настоящему времени только для каменной соли, чей монокристалл представляет собой кубическую решетку из ионов Ыа и С1 , между которыми действуют кулоновские силы притяжения. [c.11]

    Интересно отметить, что качественно этот результат соответствует результатам, представленным в работе Русанова, где расчетным путем показано, что в средней части поры плотность адсорбата обратно пропорциональна кубу радиуса поры (для сил Ван-дер-Ваальса). В нашем случае возможно более существенны кулоновские силы взаимодействия. [c.214]

    Как обычно, силу взаимодействия V мы описываем безразмерной константой связи и, которая получается сравнением энергии V[a) кулоновского отталкивания мономеров, находящихся в соседних узлах решетки, и тепловой энергии Т  [c.339]

    Величина л определяется так же, как и р. иа основании учета кулоновских сил взаимодействия диполей воды друг с другом, а также диполей воды с иоиом данного заряда и радиуса. Величины у и 1т по отдсльдюсти ие определимы, гго их разность можно вычислить. При проведет и расчета авторы пренебрегают различием в размерах образовавшегося и исходного тетраэдров. При замене в тетраэдре одной молекулы воды на ион наблюдгется переориентация четырех моле- [c.61]

    Если исходить из предположения, что адсорбция ионов на ртути определяется исключительно электростатическими силами, то все анионы должны изменять ход лишь восходящей ветви электрокапиллярной кривой, где поверхность ртути заряжена положительно. Напротив, влияние катионов должно локализоваться только иа кисходя1цей ветви, где они электростатически притягиваются к отрицательно заряженной поверхности ртути. В действительности, как это было найдено еще Гуи, многие анионы изменяют ход элек-трокапиллярпой кривой справа от точки максимума, а некоторые катионы влияют не только на нисходящую, но и на восходящую ветвь кривой. Такое поведение ионов нельзя объяснить действием только кулоновских сил. Оно связано с силами взаимодействия, отличными от простых электростатических сил. Такими силами, специфическими для данного рода частиц, могут быть, например, силы Ваи-дер-Ваальса или химические (валентные). Благодаря этим силам ионы в состоянии удерживаться на одноименно заряженной поверхности ртути и влиять на электрокапиллярные свойства границы металл — раствор. Точно так же нельзя на основе одних только электростатических представлений объяснить влияние неиоинзированных органических веществ на ход электрокапиллярных кривых. Дело в том, что большинство органических веигеств обладает меньшей диэлектрической постоянной, чем вода, и поэтому должны были бы изгоняться ею из двойного слоя уже при не- [c.239]

    Подобные отклонения можно объяснить двояко. Отказавшись от постулата 3, приходим к представлению о хемосорбции на однородной поверхности, сопровождающейся взаимодействием сорбированных частиц. Если это взаимодействие заключается во взаимном отталкивании, теплота адсорбции должна уменьшаться с увеличением степени заполнения в согласии с опытными данными. Выбрав некоторую зависимость коэффициента адсорбции Ь [связанного с теплотой адсорбции соотношением (1.6) ] от степени заполнения поверхности и подставив ее в уравнение (1.5), можем аппроксимировать таким образом любую экспериментальную изотерму адсорбции. Отталкивание хемосорбированных молекул может являться следствием квантово-механического обменного взаимодействия [9]. Силы кулоновского или диполь-динольного взаимодействия играют малую роль, так как они долнщы сказываться лишь при значительной плотности сорбированных молекул, между тем отклонения от изотермы Лангмюра (или изотермы Генри) часто становятся заметными уже при очень малых степенях заполнения поверхности. Весьма правдоподобно объяснение природы сил взаимодействия сорбированных частиц через посредство электронного газа кристаллической решетки катализатора (см. постулат 3, а также работы [9, 10]) сила такого взаимодействия незначительно уменьшается [c.17]

    Натансон [594]j рассматривал также наличие кулоновских и поляризационных сил взаимодействия между частицами и цилиндром и вывел уравнения для эффективности захвата, подобные уравнениям Кремера и Джонстона. Они были рассмотрены в обзоре Пяча [643] я здесь приводиться не будут. [c.325]

    Например, энергия кулоновского взаимодействия обратио пропорцио-пальиа расстоянию между зарядами И=д1д. г. Если же эту энергию разделить иа расстояние между заряда И, получим силу взаимодействия, отражаемую законом Кулона Р=и г д . 1г. [c.22]

    В промышленно выпускаемых приборах обычно используют консоли из нитрида кремния с пирамидальными остриями (основа 4 х 4 мкм, высота 4мкм). Номинальный радиус кривизны вершины острия обычно составляет от 20 до 50 нм. В идеальном случае на вершине острия размещается один атом (рис. 10.5-8). В методе АСМ острие всегда находится в контакте с поверхностью (это называют контактным режимом). Вследствие этого всегда существуют межатомные силы отталкивания в области контакта из-за перекрывания электронных оболочек атомов острия и субстрата. Кроме этих близкодействующих сил возникают также дальнодействующие силы (например, кулоновские силы между зарядами, диполь-дипольные взаимодействия, поляризационные силы, вандерваальсовы дисперсионные силы, капиллярные силы, обусловленные наличием пленок адсорбата между острием и субстратом), которые могут быть силами притяжения или отталкивания (рис. 10.5-8). Хотя оба типа сил вносят вклад в обш ую силу, действующую на кантилевер, только изменяющаяся сила межатомного отталкивания позволяет получить изображение поверхности с [c.375]


    В химии основное внимание уделяется взаимодействиям между атомами, ионами и молекулами, приводящим к образованию (или разрыву) химических связей. Вместе с тем уже более ста лет изучаются слабые и очень слабые взаимодействия систем с замкнутой оболочкой, между которыми в обычных лабораторных условиях не осуществляются реакции в химическом смысле этого слова. Существование жидкого (а в случае молекулярных кристаллов) и твердого состояния обусловлено наличием сил притяжения между молекулами. Равновесное расстояние между молекулами, образующими ассоциаты в жидкой и твердой фазах, определяется компенсацией сил притяжения и отталкивания. Экспериментально установлено, что силы отталкивания очень быстро ослабевают с увеличением межмолекулярного расстояния (приблизительно обратно пропорционально его двенадцатой степени), тогда как возрастание сил притяжения при уменьшении межмолекулярного расстояния происходит не так быстро (грубо говоря, обратно пропорционально шестой степени расстояния). Это обстоятельство имеет важное значение в то время как силы отталкивания на расстояниях порядка длины химической связи оказываются почти неощутимыми, силы притяжения не могут считаться пренебрежимо малыми вплоть до расстояний 0,4 нм, и поэтому о них говорят как о дально-действующих силах. Среди таких сил важная роль принадлежит дисперсионным силам в разд. 17.2 рассматривается их квантовомеханическое обоснование в рамках простой модели. В данной главе будут выведены выражения, основанные на теории возмущений и пригодные для описания межмолекулярного взаимодействия. Но прежде чем перейти к их выводу, скажем несколько слов о происхождении кулоновских, индукционных и дисперсионных сил. Для кулоновского взаимодействия обе влияющие друг на друга системы могут формально рассматриваться как состоящие из ряда мультиполей. Во втором случае происходит взаимодействие между постоянным и индуцированным мультиполями двух систем. В третьем случае мы имеем дело с взаимодействием между системами, не имеющими постоянных диполей однако и в этих системах в результате флук- [c.482]

    Исследование адсорбции ароматических аминов (анилин, о-то-луидин, 2,3- и 2,6-диметиланилин, пиридин, хинолин) в 0,1 н. НС1, выполненное Бломгреном я Бокрисом [73], также показало, что адсорбция этих соединений, которые в кислом электролите находятся в виде катионов [КНз]+, при потенциалах, соответствующих положительной ветви электрокапиллярной кривой, определяется в основном я-электронным взаимодействием. Оно облегчается при плоском расположении частиц по поверхности электрода. При потенциалах, соответствующих отрицательной ветви электрокапиллярной кривой, адсорбция определяется кулоновскими силами взаимодействия. Из этого видно, что теория электростатического взаимодействия между поверхностью ртути и адсорбируемым веществом не в состоянии объяснить все экспериментальные данные. [c.135]


Смотреть страницы где упоминается термин Силы взаимодействия кулоновские: [c.62]    [c.83]    [c.584]    [c.584]    [c.89]    [c.21]    [c.21]    [c.21]    [c.85]    [c.21]    [c.228]    [c.254]    [c.23]    [c.52]    [c.52]    [c.235]    [c.235]    [c.27]    [c.257]   
Основы общей химии Том 2 Издание 3 (1973) -- [ c.101 , c.108 ]




ПОИСК





Смотрите так же термины и статьи:

Кулоновские силы



© 2025 chem21.info Реклама на сайте