Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Таллий радиус

    Подгруппа галлия располагается в периодической системе непосредственно после семейств d-элементов. Поэтому на свойствах галлия и его аналогов в значительной степени сказывается d-сжатие. Так, от А1 к Ga атомный радиус несколько уменьшается, а энергия ионизации возрастает. На свойствах таллия, кроме того, сказывается и /-сжатие. Поэтому от In к Т1 размер атома и иона увеличивается незначительно, а энергия ионизации даже несколько возрастает. Остальные свойства элементов подгруппы галлия изменяются в той же последовательности, как и в других подгруппах р-элементов. [c.462]


    Для всех элементов этой подгруппы (за исключением таллия) характерна степень окисления +3. Для таллия наиболее устойчивой степенью окисления является - -1. Объясняется это тем, что с ростом радиуса элемента увеличивается энергетическое различие 5- и / -электронов, вследствие чего у таллия в первую очередь валентным является / -электрон, а затем уже 5. Гидроксид таллия ТЮН является сильным основанием, потому что Т1+ имеет большой радиус и малый заряд. Соли Т1 + заметно проявляют окислительные свойства, например Т1 ++2Т1=ЗТ1+. [c.78]

    Атомы элементов третьей группы являются электронными аналогами, так как все они имеют одинаковое строение внешнего уровня s p (и одинаковое число электронов на нем). Металлические свойства у них выражены слабее, чем у элементов I и II главной подгрупп, а у бора, характеризующегося малым радиусом и наличием двух квантовых слоев, преобладают неметаллические свойства. За исключением неметалла бора, все они могут находиться в водных растворах в виде гидратированных положительно трехзарядных ионов. В этой подгруппе, как и в других, с увеличением порядкового номера металлические свойства сверху вниз усиливаются. Бор является кислотообразующим элементом оксиды и гидроксиды алюминия, галлия и индия обладают амфо-терными свойствами, а оксид таллия имеет основной характер. [c.78]

    От бора к таллию должно наблюдаться нарастание металлических свойств в связи с увеличением радиусов атомов и радиусов соответствующих трехзарядных ионов  [c.171]

    На свойствах р-элементов III группы сказывается -сжатие (Л1 располагается в периодической системе в малом III периоде, а Ga, In и Tl в больших периодах непосредственно после -элементов). Так, от Л1 к Ga атомный радиус несколько уменьшается, а первый ионизационный потенциал возрастает. На свойствах атомов таллия, кроме того, сказывается и /-сжатие. Именно поэтому радиус атома Т1 близок радиусу атома In, а энергия ионизации несколько выше. [c.264]

    В подгруппе бора (валентность центрального атома 3) оксид и гидроксид имеют слабокислый характер (малый радиус) алюминия, галлия, индия — амфотерный характер (средний радиус) таллия — основной (большой радиус). [c.98]

    Как изменяются величины атомных радиусов и энергии ионизации в ряду бор — таллий Чем объясняется ход этих величин  [c.96]

    Характеристика элементов подгруппы галлия. Подобно типическим элементам, металлы подгруппы галлия являются 5/7-элементами. Несмотря на то что элементы подгруппы галлия — типовые аналоги, наблюдаются особенности в свойствах отдельных ее представителей. Элемент галлий непосредственно следует за первой десяткой кайносимметричных переходных 3 -металлов, для которых особенно сильна -контракция. Поэтому атомный радиус галлия меньше таковых не только его более тяжелых аналогов, но и алюминия. Вследствие этого ионизационные потенциалы галлия более высокие и связанные с ними энергетические характеристики отличаются от его аналогов. Уже у элементов ИВ-группы заметна тенденция к уменьшению степени окисления сверху вниз, в частности для ртути. Такое понижение положительной степени окисления еще более заметно и подгруппе галлия, В этом в определенной мере проявляется горизонтальная аналогия. Уже для таллия степень окисления +1 более стабильна, чем характеристическая степень окисления +3. Вследствие с1- и особенно /-контракции переход от индия к таллию сопровождается только незначительным увеличением атомного радиуса. В то же время ионизационные потенциалы таллия заметно больше, чем индия. Дело в том, что оба бз -электрона атома таллия подвержены сильному эффекту проникновения через двойной экран и /-электронных облаков. В результате 5-электроны с трудом участвуют в образовании химических связей. Этот факт получил наименование концепции инертной электронной пары. Поэтому у таллия часто валентным является бр-электрон, который, переходя к окислителю, превращает таллий в устойчивый ион Т1(+1). По этой причине производные Т1(+1) почти не проявляют восстановительных свойств и, наоборот, производные Т1(+3) являются сильными окислителями. [c.156]


    Общие закономерности взаимодействия, наиример,. 5- и sp-ме-таллов друг с другом можно оценить по изменению металлохимических свойств — электроотрицательностей (ОЭО), температур плавления, ионизационных потенциалов и атомных радиусов в IA—ПА—П1А группах (рис. 168). Температуры плавления определяют металлохимические свойства простого твердого "ела, а три остальные характеристики относятся к изолированным атомам. [c.374]

    Радиус атома в крис таллах алмазного ти [c.288]

    Последовательного (монотонного) изменения металлических свойств элементов в П1А-подгруппе не наблюдается. Металлические свойства резко усиливаются при переходе от бора к алюминию, несколько ослабевают у галлия и вновь постепенно растут при переходе к таллию. Обусловлено это тем, что атомы галлия, индия и таллия (в отличие от атомов бора и алюминия) содержат по 18 электронов на предпоследнем уровне. Поэтому нарушается линейное изменение свойств (радиусов атомов, температур плавления и т. п.) и от алюминия к галлию (табл. 24). [c.305]

    В геохимических процессах таллий преимущественно участвует в виде одновалентного. Его геохимия имеет двойственный характер. С одной стороны, он ведет себя как литофильный элемент, близкий к калию, рубидию и цезию, с другой стороны, — как халькофильный. Особенно близок таллий к рубидию, что объясняется практически одинаковыми ионными радиусами (1,49 А). [c.339]

    Когда орбитальный радиус уменьшен, например в III группе у галлия, суммарный потенциал увеличен у индия радиус увеличен, а потенциал уменьшен, такое же положение и в случае таллия аналогично ведут себя и элементы IV группы.... В этом обратном соотношении величин ги Е нет ничего удивительного, так как большей энергии связи электрона с атомом естественно отвечает большее его смещение в сторону ядра. Итак, можно констатировать. что 1) в IV периоде 2п, Оа, Ое, Аз отвечают малым радиусам и большим потенциалам 2) в V периоде Сё, 1п, Зп — большим радиусам и малым потенциалам 3) в VI периоде Hg, Т1, РЬ— малым радиусам и большим потенциалам. [c.121]

    Ме- талл Z Плот- ность. г/см Температура, Радиус атома, А Первый потенциал ионизации, В Радиусы иоиов Д Электронные потенциалы. В [c.335]

    Рассчитайте радиусы атомов а) кальция б) стронция в) алюминия г) таллия д) олова е) скандия  [c.73]

    Са2+, Sf2+, Mg2+ и Pb +, в то время как обмен с участием ионов NHI, Ва +, Zn , Ni + и Со + приводил к разрушению структуры [14]. В табл. 15 представлены данные о степени замещения, достигаемой при обмене алкиламмониевыми ионами. Постоянная элементарной ячейки изменяется незначительно, от 12,273 А для NaA до 12,285 А для Т1А, тогда как содержание воды в ячейке уменьшается с увеличением радиуса катиона до 28,6 молекул для NaA (Гма = = 0,98 А) до 22,6 для Т1А (/-ti=1,49 А). Химический анализ ионообменника, участвовавшего в обмене, показывает, что не всегда тринадцатый атом натрия, находящийся в р-клетке, может быть замещен. Так, например, предельные формы, полученные путем замещения натрия ионами серебра, таллия и кальция, отвечают следующим формулам  [c.76]

    Поляризуемость а иона, имеющая размерность объема (см. раздел 6.2.4), пропорциональна и часто близка по абсолютной величине к мольному объему иона данного вида г, где г — кристаллографический радиус иона. Поляризуемость ионов, как и их радиус, зависит от их электронной структуры, заряда и размера. Она увеличивается в главных подгруппах при движении сверху вниз и уменьшается с увеличением положительного заряда иона, причем значительно больше у анионов, особенно двузарядных, чем у катионов, и больше у катионов -ме-таллов, чем з- и р-металлов с тем же зарядом, т. е. закономерности изменения поляризуемости ионов те же, что и для радиусов ионов (см. раздел 4.5.5). [c.261]

    Для полимерных материалов зависимость свойств от степени полимеризации преимущественно наблюдается в низкомолекулярной области. Полйфосфаты не являются исключением. Подобные зависимости легко обнаруживаются для кристаллизационных свойств и микротвердости. Рассмотрим полйфосфаты натрия и таллия. Радиусы катионов составляют натрия 0,098 нм, таллия 0,136 нм. Интересно отметить, что образцы полифосфата таллия уже при сравнительно малых степенях поликонденсации ведут себя как полимеры. В отличие от образцов полифосфата натрия, которые являются водорастворимыми в исследованном интервале молекулярных масс, полифосфат таллия утрачивает свою водораство-римость от и = 28—30 и выше. Поэтому определение степени поликонденсащш более высокомолекулярных продуктов, так же как и систем с двухзарядными катионами, методом потенциометрического титрования концевых групп не представилось возможным. [c.197]

    В табл. 1.4 приведены значения ковалентных радиусов немб" таллов. Ковалентные радиусы также выч 1сляются как половина межатомного расстояния в молекулах или кристаллах соответствующих простых веществ. Как и атомы йеталлов, в группах периодической системы атомы неметаллов с большим порядковым номером имеют больший радиус. Это обусловлено возрастанием числа электронных слоев. Зависимость радиусов атомов неметаллов в периодах от порядкового номера болеё сложная. Так, для элементов во втором периоде сначала снижается, а затем снова возрастает такая закономерность объясняется особенностями химической связи (см. разд. 2.5). < [c.47]

    Известио очень много комплексов рассматриваемых элементов. Связь ме-талл лигаид в них обычно прочнее, чем в комплексных соединениях Ре, Со, N1. Это обусловлено большим зарядом ядер ятомов платиновых элементов и уменьшенными а результате <1- и /-сжатия радиусами ионов. Простых соединений рассматриваемых элементов известны десятки, а комплексных - тясячи. В растворах существуют только комплексные ионы платиновых металлов. Большой вклад в химию комплексных соединений платиновых металлов внесли работы отечественных ученых К. К. Клауса, Л. А. Чугвева, И. И. Черняева, А. А. Гринберга и др. [c.546]

    Третья группа. Для элементов подгруппы бора (за исключением таллия) характерна степень окисления +3. Последней соответствуют соединения Э(ОН)з. Происходит дальнейшее ослабление (от I группы к И, от И к П1) основных свойств. Если LiOH—основание, а Ве(0Н)2 — амфотерное соединение, то В(ОН)з —кислота. Таким.образом, при переходе к третьей группе мы впервые встречаемся с элементом, образуюш,им кислоту (этим бор отличается и от всех элементов И1 группы), и с иэополикислотами, которые также характерны для бора. В соответствии с увеличением радиусов ионов элементов ВН ряду А1(0Н)з —Т1(ОН)д происходит усиление основных свойств. Если 6а(ОН)з отличается практически одинаковой степенью диссоциации с отщеплением ионов 0Н и Н+, то у 1п(0Н)з несколько преобладают основные свойства, а у Т1(0Н)з амфотерные свойства выражены очень слабо. Обращает на себя внимание очень медленное усиление основных свойств в этом ряду соединений. Это объясняется тем, что если атомы элементов третьей главной подгруппы являются электронными аналогами (их внешний электронный слой имеет строение s p), то ионы В + и А1 + сильно отличаются от Ga +, и ТР+. Первые имеют наружные оболочки атомов благородных газов, а вторые — 18-электронные оболочки, содержащие 10 d-электронов. Вследствие этого увеличение радиусов ионов после алюминия становится менее значительным, что и приводит к медленному усилению основного характера соединений. Здесь, так же как и в предыдущей группе, наблюдается диагональное сходство амфотерные гидроксиды А и Ве близки по свойствам. [c.91]


    Галлий, индий, таллий расположены в П1 группе периодической системы элементов Менделеева и составляют побочную подгруппу (с. 50). Электронная конфигурация атомов представлена в табл. Г17. В отличие от В и А1 электронам валентносги у Оа, 1п, Т1 предшествует оболочка из 18ё, что приводит к немонотонному нзмененню ряда свойств элементов в подгруппе с ростом порядкового номера (см. табл. 1.17). В связи с электронной конфигурацией пз пр они проявляют степень окисления, равную +3 и +1. Устойчивость трехвалектного состояния уменьшается от Оа к Т1 (а устойчивость одновалентного состояния растет), что связано с ростом поляризующего действия трехвалентных ионов по мере увеличения их радиуса и появлением у Т1 эффекта дополнительной поляризации. Так, если для Са наиболее характерна степень окисления, равная +3, то для Т1 равная +1. [c.167]

    Орбитальные радиусы р-элементов в пределах каждого периода также закономерно и монотонно уменьшаются, однако это уменьшение более плавное, чем у s-элементов. Если же рассматривать изменение радиусов р-элементов в каждой группе с ростол числа слоев, то обращает на себя внимание немонотонность этого изменения. Радиусы кайносимметричных 2р-элементов заметно меньше, чем у их более тяжелых и некайносимметричиых аналогов. Вследствие этого, например, во 2-м периоде раднус бора меньше, чем радиус предшествующего бериллия, а в 3-м периоде орбитальный радиус алюминия оказывается несколько большим, чем у магния. Прп переходе от р-элементов 3-го периода к р-элементам 4-го периода в пределах каждой группы наблюдается очень незначительное увеличение орбитального радиуса (Si—Ge, Р—As, S—Se, l—Br, Ar—Kr), a для элементов ПГ группы — даже его уменьшение от А к Ga, что объясняется d-сжатием. При переходе в пределах одной группы от р-элементов 4-го периода к 5-му, а затем и к б-му (Ge— Sn—Pb, As—Sb—Bi и т. д.) наблюдается увеличение орбитальных радиусов. Однако в П1А-группе (Ga—In—Tl) орбитальный радиус меняется немонотонно от Ga к In увеличивается, а затем уменьшается (Т1). Последнее также обусловлено влиянием лантаноидного сжатия, которое уже не проявляется в явном виде у следующих за таллием р-элементов 6-го периода. [c.18]

    Таким образом, в аква- и гидроксокомплексах Ga + имеет к. ч. 6. Одиако для всех трех элементов существуют комплексы с координационной валентностью и 4, и 6. Ниже приводим примеры некоторых из этих комплексов [GaF ] " (р/С 16,8), [1п(0Н)4) (рК 29,6), fin( H, 00)J - (р/С 18,3), [ТШг,]- (р/С 26,1), [TlBrJ - (р/С 31,6). Для Ga (-ЬЗ), как и А1 (Ч-З), наиболее характерны фторокомплексы, а 1п(-)-3) и Т1 (+3) обладают большим сродством к другим гологенид-ионам. Здесь сказывается размерный фактор увеличение ионных радиусов комплексообразователей в ряду от галлия к таллию. [c.163]

    Существование в Периодической системе вставных d и /-рядов существенно влияет на ионизационные потенциалы и атомные (ионные) радиусы последующих элементов. Особенно велико влияние заполненного 4/1 -слоя, которое называется лантаноидным сжатием (контракцией). Это явление заключается в том, что наличие завершенного 4/14-уровня способствует уменьшению объема атома за счет взаимодействия оболочки с ядром вследствие последовательного возрастания его заряда. Поэтому, наприм(ф, с увеличением атомного номера в ряду лантаноидов происходит неуклонное уменьшение размеров атома. Это же явление объяенж т целый ряд особенностей, характерных для d- и sp-элементов VI периода, следующих за лантаноидами. Так, лантаноидная контракция обусловливает близость атомных радиусов и ионизационных потенциалов, а следовательно, и химических свойств -элементов V и VI периодов (Zr—Hf, Nb—Та, Мо—W и т. д.). Особенно ярко это выражено у элементов-близнецов циркония и гафния, поскольку гафний следует непосредственно за лантаноидами и лантаноидное сжатие компенсирует увеличение атомного радиуса, вызванное появлением дополнительного электронного слоя. Эффект лантаноидной контракции простирается чрезвычайно далеко, оказывая влияние и на свойства sp-элементов VI периода. В частности, для последних характерна особая устойчивость низших степеней окисления Т1+ , РЬ , Bi+з, хотя эти элементы принадлежат, соответственно, к III, IV и V группам. Это объясняется наличием так называемой инертной б52-эле- ктронной пары, не участвующей в образовании связей группировки электронов, устойчивость которой опять-таки обусловлена лантаноидной контракцией. У таллия, свинца и висмута участвуют в образовании связи лишь внешние бр-электроны (Tl[6s 6p ], Pb[6s 6p2], Bi[6s 6p ]). Аналогичное явление актиноидной контракции , по-видимому, также должно наблюдаться, хотя и в меньшей степени. Однако проследить это влияние пока невозможно вследствие малой стабильности трансурановых элементов и незавершенности VII периода. Таким образом, положение металла в Периодической системе и особенности структуры валентной электронной оболочки играют определяющую роль в интерпретации химических и металлохимических свойств элементов. [c.369]

    Общая характеристика. Эти элементы редкие, за исключением алюминия, на долю которого приходится 8,8% массы земной коры (третье место — за кислородом и кремнием). Во внешнем электронном уровне их атомов по три электрона а в возбужденном состоянии Проявляют высшую валентность 111 Э2О3, Э(ОН)з, ЭС1з и т. д. Связи с тремя соседними атомами в соединениях типа ЭХд осуществляются за счет перекрывания трех гибридных облаков поэтому молекулы имеют плоское трехугольное строение, дипольный момент нуль. Из-за того, что в атомах галлия, индия и таллия предпоследний уровень содержит по 18 электронов, алюминия 8 и бора 2, нарушаются закономерные различия некоторых свойств при переходе от алюминия к галлию температур плавления элементарных веществ, радиусов атомов, энтальпий и свободных энергий образования оксидов, свойств гидроксидов и пр. (табл. 23). Таков же характер изменения различий при переходе от магния к цинку. [c.279]

    Ме- талл z Плотность, r/см Темперг плав- ления 1тура,°С кипе- ния Радиус атома, А Первый потенциал ионизации, В Радиусы ионов R +. А Электродный потенциал, В [c.337]

    М . талл г Электронная формула Радиусы, А Потен- циал иони- зации, В Электроотри-цатель-ность Электродный потенциал, В [c.341]

    ТАЛЛИЙ (от греч. thallos-зеленая ветка лат. ThaUimn) Л, хнм. элемент Ш гр. периодич. системы, ат. н. 81, ат. м. 204 383. Природный Т.-смесь двух изотопов ° Т1 (29,5%) и (70,5%). Радиоактивные изотопы с мае. ч. от 206 до 210 и Ti,2 от 1,32 до 4,79 мин - члены природных радиоактивных рядов. Поперечное сечение захвата тепловых нейтронов прир. смеси изотопов 3,4-10 м . Конфигурация внеш. электронной оболочки атома 6s 6p степени окисления -Ь 1 и -ьЗ энергии ионизации при переходе от Т1° к ТР 6,1080, 20,4284, 29,8 эВ работа выхода электрона 3,70 эВ электроотрицательность по Полингу 1,8 атомный радиус 0,171 нм, ионные радиусы, н.м (в скобках указаны координац. числа) Т1 + 0,164 (6), 0,173 (8), 0,184 (12), Т1 + 0,089 (4), 0,103 (6), 0,112 (8). [c.490]

    Для разл. диапазонов X используют кристаллы-анализаторы с разными к (напр., 1лР, кварц, фтапат таллия). Увеличение К - радиуса окр)Жности Роуланда, проведенной через три точки в образце, кристалле-анализаторе и детекторе, повышает спектральное разрешение 6Е, но при этом уменьшает интенсивность 1. Величина АБ достигает обычно 10 эВ. В качестве детектора чаще всего используют проточные пропорциональные счетчики. [c.444]

    Разнолигандные комплексы обладают значительной устойчивостью. Вероятность их образования нарастает с увеличением радиуса при переходе от алюминия к таллию и по мере уменьшения дентатности комплексона. В случае индия, как правило, число входящих в координационную сферу монодентатных лигандов не превышает трех например, известны весьма устойчивые комплексонаты [In (S N)3ida]2-, [In(S N)3nta] ", [In(S N)2edta]3-. Комплексонаты индия успешно используются для получения сплавов индия и золота из щелочных сред [284] [c.360]

    Многие соединения одновалентного таллия аналогичны соответствующим соединениям щелочных металлов. Это можно объяснить одинаковой валентностью катионов щелочных металлов и таллия и очень близкими размерами их ионных радиусов. Поэтому соединения таллия изоморфны с соответствующими соединениями щелочных металлов и часто образуют с ними смешанные кристаллы. Сходство одновалентного таллия со щелочными металлами можно иллюстрировать, например, хорошей растворимостью ТЮН в воде. Таллий дает осадки со многими реактивами на К+, Rb+ и s+, например, с гексанитрокобальтиатом, хлороплатинатом, гексанитродифениламином, полинитрофенол ами. [c.10]

    Химические анализы образцов поллуцита различных месторождений указывают на переменное количество в минерале не только цезня и преобладающей примеси — натрия, но и других замещающих цезий элементов. Замещение цезия при этом обусловлено прежде всего явлениями изоморфизма. Так, весьма частыми спутниками цезия в поллуците являются рубидий и таллий — элементы, сходные между собой по химическим свойствам и имеющие ионные радиусы, близкие к ионному радиусу цезия [142]. В этом отношении интересны данные Л. Аренса [184] анализа образцов поллуцита на рубидий, таллий и другие второстепенные составные части минерала. Образцы поллуцита из месторождений штатов Мэн, Южная Дакота (США) и Варутреска (Швеция) содержали соответственно (вес. %)  [c.214]

    Оче (в КаТ1 короче на 12 . . Чем су.мма радиусов атомоз, определенных нз структур чистых 1 е-таллов. [c.472]


Смотреть страницы где упоминается термин Таллий радиус: [c.469]    [c.347]    [c.543]    [c.62]    [c.104]    [c.138]    [c.118]    [c.234]    [c.338]    [c.343]    [c.392]    [c.188]    [c.605]    [c.135]   
Основы общей химии Том 2 Издание 3 (1973) -- [ c.11 , c.130 , c.148 ]




ПОИСК





Смотрите так же термины и статьи:

Таллий



© 2025 chem21.info Реклама на сайте