Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Температура сгорания элементов в кислороде

Рис. ХУ-40. Температуры сгорания элементов в кислороде (°К 103). Рис. ХУ-40. Температуры сгорания элементов в кислороде (°К 103).

    Термодинамический расчет равновесного состава продуктов сгорания и конверсии. Применяемые в промышленности углеводородные топлива и окислители (воздух или кислород) состоят в основном из углерода С, водорода Н, кислорода О и азота N. Расчеты показывают, что в области умеренно высоких температур (800—1800 °С) при близких к атмосферному давлениях в термодинамически равновесной смеси в заметных количествах могут присутствовать лишь СО2, СО, Н2О, Н2, N2, СН4, О2 (при коэффициенте расхода воздуха ав > 1) и сажистый углерод С (при определенных, достаточно малых значениях ав). Диссоциация Н2О, СО2, а тем более СО, Н2 и N2 при этих температурах еще незаметна, в то время как все углеводороды (кроме СН4) диссоциируют практически нацело. Одновременное присутствие в равновесной смеси заметных количеств горючих элементов и кислорода невозможно при ав < 1 нет О2, при ав > 1 — горючих газов. [c.192]

    Натрий довольно широко применяется в качестве теплоносителя в различных энергетических установках. Он обладает достаточно хорошими физическими и теплофизическими свойствами, позволяющими осуществлять интенсивный теплосъем в различных теплообменных аппаратах (теплотворная способность 2180ккал/кг коэффициент теплопроводности, кал (см-с-град), 0,317 при 21 °С и 0,205 при 100 °С). Вместе с тем натрий характеризуется и существенными недостатками. Он обладает высокой химической активностью, благодаря которой он реагирует со многими химическими элементами и соединениями. При его горении выделяется большое количество тепла, что приводит к росту температуры и давления в помещениях. Он обладает большой реакционной способностью [температура горения около 900 °С, температура самовоспламенения в воздухе 330—360 °С, температура самовоспламенения в кислороде 118°С, минимальное содержание кислорода, необходимое для горения, 5 % объема, скорость выгорания 0,7—0,9 кг/ /(м2-мин)]. При сгорании в избытке кислорода образуется перекись NaaOa, которая с легкоокисляющимися веществами (порошками алюминия, серой, углем и др.) реагирует очень энергично, иногда со взрывом. Карбиды щелочных металлов обладают большой химической активностью в атмосфере углекислого и сернистого газов они самовоспламеняются энергично и взаимодействуют с водой со взрывом. Твердая углекислота взрывается с расплавленным натрием при температуре 350 °С. Реакция с водой начинается при температуре —98 °С с выделением водорода. Азотистое соединение NaNa взрывается при температуре, близкой к плавлению. В хлоре и фторе натрий воспламеняется при обычной температуре, с бромом взаимодействует при темпера- [c.115]

    Теплота сгорания топлива. Важнейшей характеристикой топлива является теплота сгорания. Теплотой сгорания вещества называют тепловой эффект реакции окисления кислородом элементов, входящих в состав этого вещества до образования высших оксидов. Теплоту сгорания обычно относят к стандартному состоянию (давление 101 кПа), одному молю топлива и температуре 298,15 К и назначают стандартной теплотой сгорания. [c.381]

    Продуктами сгорания называются газообраз- ые, жидкие и твердые вещества, образующиеся в результате процесса горения. Состав их зависит от состава горящего вещества и условий его горения. Органические и неорганические горючие вещества состоят главным образом из углерода, водорода, кислорода, серы, фосфора и азота. Из них углерод, водород, сера и фосфор способны окисляться при горе-иии и образовывать продукты СО2, СО, Н2О, ЗОг и РгОа. Азот при температуре горения не способен окисляться и выделяется в свободном состоянии, а кислород расходуется на окисление горючих элементов вещества. [c.27]


    Несколько иной механизм действия органических растворителей в случае комбинированных горелок-распылителей з . Здесь увеличение интенсивности излучения для некоторых металлов доходит до 10-кратного, а увеличение поглощения света (для линии никеля с длиной волны 341,5 ммк) до 36-кратного . При введении в пламя органического растворителя значительно увеличивается объем пламени . Температура пламени снижается на 90—250° С при введении в пламя водных растворов (в отдельных случаях отмечалось снижение до 2600° С для пламени дициан-кислород и до 900° С для кислородно-водородного пламени з). При введении органических растворителей температура пламени снижается меньше. Таким образом, температура пламени при использовании органических растворителей выше, чем при использовании водных растворов (для кислородно-водородного пламени она составляет 2810° С с первыми и 2700° С со вторыми). К этому следует добавить более эффективное использование вещества в капельках аэрозоля за счет теплового эффекта сгорания орх анического растворителя. Все эти факторы следует рассматривать как дополнительно увеличивающие концентрацию атомов определяемого элемента в пламени и их свечение. При введении в пламя смесей водород — кислород или ацетилен — кислород растворов солей и элементов в органических [c.88]

    Детектор по теплоте сгорания (термохимический). Основан на измерении теплового эффекта при сгорании компонентов анализируемой пробы в присутствии катализатора. Катализатором служит платиновое проволочное сопротивление, являющееся одновременно и чувствительным элементом детектора. По конструкции этот детектор во многом аналогичен детектору по теплопроводности. В качестве газа-носителя используются только воздух или кислород, обеспечивающие горение газов. Температура нагревательных элементов достигает 800—900° С. Оба нагревательных элемента являются плечевыми сопротивлениями схемы моста Уитстона. За счет большого выделения тепла происходит большое изменение температуры нити. Отсюда чувствительность этого детектора выше в десятки раз, чем у катарометра. [c.247]

    К однокомпонентным топливам относятся вещества, молекула которых содержит в своем составе горючие элементы и необходимый для горения кислород, а также устойчивые смеси (растворы) горючих и окислителей, не вступающих в химическое взаимодействие друг с другом при обычных температурах. Такие топлива при сгорании не нуждаются в подаче окислителя в камеру сгорания. [c.676]

    Так как парциальные давления вводимых в пламя соединений определяемых элементов пренебрежимо малы, можно считать, что газовая смесь пламени состоит в основном из соединений, образующихся в ходе реакции горения, и продуктов диссоциации воды. Примерный состав газов пламен наиболее часто употребляемых горючих смесей представлен в табл. 2.2. Как это видно из таблицы, помимо продуктов полного сгорания, т. е. СОг и НгО, в газовой смеси присутствуют СО и продукты диссоциации воды свободный гидроксил ОН, Ог, Нг, О, Н, а также N2, молекулы которого при температуре пламени практически не диссоциируют. Из всех соединений, образуемых ме таллами, при этих температурах наиболее устойчивы молекулы монооксидов типа МеО, а иногда и молекулы типа МеОН. Поэтому в условиях относительно высокой концентрации свободного кислорода и гидроксила образованием молекул других соединений можно пренебречь. [c.64]

    Определение углерода в черных металлах основано на следующем принципе. Пробу анализируемого металла сжигают при высокой температуре в атмосфере кислорода, а полученный при этом СОг определяют с помощью газометрических, весовых или титрометрических методов. Для этого взвешенную пробу тонких металлических стружек или порошка (предварительно очищенных органическим растворителем от возможного загрязнения маслом) помещают в специальную лодочку из высококачественного фарфора, кварца или оксида алюминия. Лодочку вводят в керамическую огнеупорную трубу электрической печи и нагревают до 1200 °С. Через трубу пропускают струю кислорода, предварительно очищенного от следов СОг, восстанавливающих примесей или твердых частиц. Для сталей с высоким содержанием легирующих элементов в лодочку добавляют (менее 0,005%) более легкоплавкие металлы, такие, как медь, свинец или олово, не содержащие углерод. Пропущенный через трубу газ очищается от увлеченных частиц оксидов железа и ЗОз, полученного при сгорании содержащейся в пробе серы. Определить СОг в газе можно различными методами. [c.474]

    В расчетах методом суммирования широко используются термодинамические характеристики реакций образования веществ. Свободная энергия образования вещества в стандартных условиях, АРf, представляет собой изменение свободной энергии, происходящее при образовании этого вещества в его обычном состоянии (твердое тело, жидкость или газ) из составляющих элементов, находящихся в стандартном состоянии. За стандартное состояние элемента обычно принимается его наиболее стабильная форма при комнатной температуре. Стандартное состояние углерода — графит, водорода или кислорода — двухатомные газы. Изменение свободной энергии в стандартных условиях можно легко рассчитать, складывая стандартные свободные энергии образования индивидуальных компонентов реакции. Так, например, АР° для сгорания бутадиена (первая реакция в (УП-4) рассчитывается по выражению [c.361]

    Особенно агрессивная локальная коррозия элементов печи наблюдается при сжигании серосодержащего газа. На хромоникелевых сплавах это проявляется при температуре на 100—150°С ниже предела его окалиностойкости, а для сплавов на никелевой основе такие явления наблюдаются при 650—750 °С, если при сжигании топлива создается восстановительная среда. При достаточном избытке кислорода в продуктах сгорания серосодержащего топлива образующиеся сернистые соединения не проявляют агрессивности вплоть до 850 °С. Если же создаются условия восстановительной среды в результате неполного сгорания газа в печи и при наличии в газе SO2, то скорость коррозии резко возрастает (в 6—25 раз). [c.174]

    Таким образом, в конце прошлого столетия точка зрения, предполагающая, что пламенное сгорание углеводородов — это процесс непосредственного распада горючего на элементы с последующим их взаимодействием с кислородом, должна была вступить в противоречие с повседневным опытом химиков, наблюдавших внедрение кислорода в молекулу углеводорода без разрыва углеродного скелета. Первым отражением этого противоречия явились прогрессивные для того времени представления Армстронга [4], высказанные им еще в 1874 г. Он предположил, что промежуточные стадии пламенного сгорания углеводородов представляют собой преходящее образование неустойчивых гидроксилированных молекул, получающихся внедрением кислорода в исходную молекулу горючего. Такие окисленные образования способны при высокой температуре распадаться на стабильные кислородсодержащие промежуточные продукты, так что весь процесс может быть изображен как последовательное гидроксилирование углеводорода. [c.6]

    Из неметаллических элементов наиболее тугоплавки углерод и бор, т. е. элементы П1—IV групп с ковалентной связью. К сожалению, не все перечисленные элементы сохраняют достаточный уровень свойств при высоких температурах. Причина тому — состав окружающей среды. Так, например, алмаз, имеющий самую высокую температуру плавления (4200° С) из всех существующих на земле элементов, при отсутствии защитной атмосферы сгорает при 850—1000° С, а в атмосфере кислорода — при 700—850° С. Пленка окисла на молибдене появляется при 250° С, а при температурах выше 700° С окисел начинает так быстро испаряться, что кусок молибдена буквально тает на глазах. Например, молибденовый стержень диаметром 13 мм при 1100° С через 6 ч будет полностью уничтожен . Среди окислов тугоплавких металлов самую меньшую температуру плавления имеет окисел рения. Он плавится при 300° С и кипит при несколько большей температуре. Кроме безвозвратных потерь (окалина и продукты сгорания или испарения), при длительном воздействии высоких температур происходит своего рода химико-термическая обработка поверхностных слоев, газонасыщение с образованием хрупких соединений. [c.215]


    Сплавы на никелевой основе используют для изготовления элементов камер сгорания. Эти сплавы проявляют высокую жаростойкость при температурах 1000—1200°С в условиях окисления кислородом (воздух, продукты сгорания природного газа и др.) и подвергаются, как правило, интенсивной коррозии в средах. [c.238]

    В ВРД кислород воздуха, используемый для сжигания горючего, в значительной мере разбавлен азотом — балластным элементом, не участвующим в горении. Содержание кислорода в жидких окислителях значительно выше, чем в воздухе, и достигает 75—100% веса окислителя. В связи с этим концентрация химической энергии на единицу веса топлива для ЖРД (горючее - - окислитель) намного больше, чем в реактивных топливах. При сгорании топлива для ЖРД выделяется очень большое количество тепла и достигаются высокие температуры и скорости истечения продуктов сгорания, что обеспечивает получение высоких мощностей двигателя. [c.592]

    С увеличением температуры, воздействию которой подвергаются топлива и особенно масла, в составе осадков н отложений все больше обнаруживается соединений, обогащенных гетероатомами, преимущественно кислородом, и углеродом. В застойных зонах двигателя, где не происходит достаточного кислородного обмена, скапливается повышенное количество нагара или продуктов неполного сгорания. В составе этих сажистых плотных образований наряду с большим содержанием углерода обнаруживается значительное количество кислорода, серы, азота, а также зольных элементов. Механизм образования таких обуглероженных соединений мало изучен. Одна из теорий сгорания вещества (капельная) исходит из того, что в зонах с пониженной температурой протекает дегидрогенизация и конденсация свободных радикалов вначале до простых ароматических соеди-ний, а затем до сложных высокомолекулярных соединений с низкой упругостью паров даже при температуре пламени. [c.183]

    Проблема охлаждения кислородных двигателей несколько упрощается, если в качестве горючего компонента применяются вещества с повыщенньим содержанием в молекуле водородных атомов. Водород — один из наиболее теплопроизводительныл горючих элементов, но температура сгорания его в атмосфере кислорода гораздо ниже, чем других распространенных горючих. Сгорание водорода в кислороде сопровождается выделением тепла в количестве 3210 ккал/кг при идеальной температуре сгорания 4120°С, а углеродно-кислородное топливо имеет теплопроизводительность 2130 ккал/кг при идеальной температуре сгорания 5950° С. [c.40]

    Принципы современной калориметрии. В немногих случаях, например для газообразных НС1, HjO и Oj, можно определить теплоту образования соединения, измеряя тепло, выделяющееся при непосредственном их синтезе из элементов. Однако в большинстве случаев необходимо измерять теплоту тех реакций, для которых известны теплоты образования всех исходных веществ и продуктов реакции, за исключением интересующего нас вещества. Теплоты образования большинства органических соединений получены измерением теплоты, выделяющейся при сжигании в кислороде под давлением в бомбе при постоянном объеме. В случае НС1, как упомянуто выше, возможно измерить теплоту образования из Hj и lj при постоянном давлении около 1 атм", поэтому, если не считать второстепенных поправок, то наблюдаемый тепловой эффект представляет собой непосредственно величину АН образования. С другой стороны, результаты, получаемые при сжигании в бомбе постоянного объема под повышенным давлением, дают изменение внутренней энергии, соответствующее этому давлению эти данные должны быть подвергнуты обработке с помощью весьма тонких методов расчета для получения величины ДН при 1 атм и комнатной температуре [1]. Кроме того, вычисление теплот образования из теплот сгорания требует знания теплот образования HjO, Oj и других соединений, образующихся в бомбе следовательно, если эти термохимические постоянные не будут определены с высокой степенью точности, то и точность вычисляемой теплоты образования будет недостаточной. Надежность определения каждой термохимической величины в значительной мере зависит от методов анализа, применявшихся для определения качественного и количественного состава образовавшихся продуктов. [c.43]

    Теьшература и положение второго и третьего элементов печи в течение всего, опыта не меняется. Положение первого элемента печи по отношению к лодочке и его температура определяются в соответствии с данными, приведенными в табл. 7. В процессе сгорания навески угля скорость тока кислорода в поглотительных сосудах резко снижается. В этот период следует усилить подачу кислорода, доводя ее в поглотительной цепи до 1—2 пузырьков в 1 сек. После окончания этого периода вновь устанавливают первоначальную скорость 2—3 пузырька в 1 сек., одинаковую в очистительной и поглотительной цени. [c.40]

    Наиболее прямой путь получения сведений об энергиях связи — использование термохимических данных, т. е. сведений о тепловых эффектах реакций. Практически чаще всего эти данные получают в виде теплот сгорания, т. е. теплового эффекта, которым сопровождается полное сгорание органического соединения до оксидов составляющих его элементов (СОг, НгО, SO2), азот, бром и иод выделяются в свободном виде, хлор образует НС1. Сжигание проводят в калориметрах — приборах, состоящих из прочных металлических сосудов для сожжения вещества под давлением кислорода, причем по повышению температуры в специальной водяной рубашке сосуда учитывают количество выделившегося тепла. Полученные данные используют для расчета теплот образования сое-динений из атомов составляющих их элементов от теплот образования переходят к энергиям связей. Так, например, теплота образования метана равна 1660 кДж/моль. Поскольку при образовании метана возникают четыре С—Н-связи, на долю каждой из них приходится энергия 1660 4 = 415 кДж/моль. Разность между теплотами образования двух соседних членов ряда парафинов составляет около 1180 кДж/моль это значение соответствует теплоте образования группы СНг, т. е. созданию дополнительной С—С-связи и двух С—Н-связей. Вычитая из приведенного выше значения энергию двух С—Н-связей, можно получить энергию [c.34]

    Малые длины связей между кайносимметричными и немногослойными атомами С позволяют совершаться перекрыванию облаков л-электронов, а потому для химии углерода весьл а характерны кратные связи в отличие от химии кремния. Углерод можно назвать полидесмогеном , т. е. элементом — образователем двойных и тройных связей. Эти связи настолько прочны (этому способствует заметно и энергия корреляции) и вместе с тем в отсутствие катализаторов и высоких температур настолько мало реакционноспособны (достаточно вспомнить необходимость платинового катализатора при гидрировании этиленовых производных), что органическая химия богата мономерами даже среди класса ненасыщенных соединений, молекулы которых могли бы полимеризоваться с разрывом кратных связей, если бы при помощи катализаторов была преодолена их инертность. Напомним, что и молекулы СО для своего сгорания в кислороде требуют катализаторов. Этилен полимеризуется при низких давлениях и температурах лишь в присутствии катализаторов, например, смеси триэтилалюминия и четыреххлористого титана. [c.358]

    При иснользовании детектора по теплоте сгорания с платиновой нитью температура чувствительного элемента поддерживается в пределах 700 — 800 С. Как показывают зависимости, приведенные на рис. 5-23, при этой рабочей температуре коэффициент теплопроводности кислорода превышает значение коэффициента теплопроводности воздуха Ядозд, в то время как теплопроводность азота Я меньше Явозд- В связи [c.153]

    Воспламенение струи пылевоздушной смеси, вдуваемой в топочную камеру, имеет характер вынужденного воспламенения (иначе зажигания) подобно рассмотренному выше для гомогенной газовоздушной смеои. Начинаясь по периферийной поверхности струи, воспламенение постепенно развивается в глубь ее сечения. Первоначальным источником тепла для зажигания струи пылевоздушной смеси служат эжектируемые ею высокотемпературные топочные газы, окружающие вдуваемую струю. Подмешиваясь к внешним слоям струи, топочные газы доводят их до воспламенения. В свою очередь воспламенившиеся элементы потока иылевоздушной смеси служат источником тепла для дальнейшего развития воспламенения в глубь сечения струи. В итоге при зажигании пылевоздушной струи, подобно тому как это наблюдается в струе газовоздушной, возникает фронт воопламенения. Однако следует отметить весьма существенное различие в развитии этого процесса между газо- и пылевоздушными струями. В первом случае при наличии в смеси достаточного для ее сгорания количества кислорода горение (и тепловыделение) завершается в тонком фронте пламени, разделяющем исходную невоопламененную омесь и продукты горения. Во втором случае горение и тепловыделение, начинаясь по франту воопламенения, значительно растягиваются по времени и в пространстве. Вследствие этого существенно замедляется и развитие высоких температур в зоне воспламенения, а скорость распространения фронта воспламенения резко падает по сравнению с гомогенной газовой смесью. В особенности это относится к твердым топливам, бедным летучими. Сгорание летучих, сосредоточенное в зоне фронта воспламенения, сравнительно быстро повышает температуру воспламеняющейся смеси. При большом выходе летучих развивающаяся от их сгорания температура существенно выше уровня воспламенения [c.27]

    Если результаты измерений теплоты сгорания органического соединения, не содержащего иных элементов, кроме углерода, водорода и кислорода, были правильно рассчитаны, то величина Qe представляет собой тепло, выделяющееся при комнатной температуре и постоянном давлении в 1 атм при сгорании в кислороде вещества в форме, стабильной при комнатной температурё, с образованием газо разной углекислоты и жидкой воды. Например, теплота сгорания этилового спирта Qтop. представляет собой величину — ДЯ процесса, изображаемого уравнением [c.46]

    Все описанные соотношения справедливы не только для кислородсодержащих соединений. Так, для углеводородов применимы те же соотношения, но число атомов кислорода принимается равным нулю. Для соединений, содержащих серу, азот, фосфор, в уравнении (VI,1) постоянство суммы теплот образования и теплот сгорания сохраняется, но в правую часть уравнения входит новый член, представляющий теплоту сгорания перечисленных элементов (точнее говоря — соответствующих простых веществ). Конечное состояние продуктов сгорания в этом случае принимается иногда условно. Здесь важно лишь, чтобы это состояние было одинаковым конечным состоянием, принятым при определении теплоты сгорания данного соединения. Одинаковыми должны быть и исходные состояния данного элемента в реакции, к которой относится теплота сгорания простого вещества, и в реакции образования рассматриваемого соединения нз простых веществ. Практически это замечание относится главным образом к сере, так как для нее параметры реакций образования и, в частности, теплоту образования -в настоящее время часто относят к исходному состоянию ее в виде газа с двухатомными молекулами, 5г(г). Хотя стандартное состояние такого газа в обычных условиях физически нереализуемо, термодинамически оно определено достаточно хорошо, а использование параметров его в качестве вспомогательных расчетнь1х величин дает возможность при выражении влияния температуры на параметры реакций образования избежать искажающего влия ния изменений агрегатного состояния серы при повышенных температурах. К тому же при сопоставлении серусодержащих соединений с аналогичными кислородными соединениями параметры реакций образования с участием 5г(г), естественно, показывают более закономерные соотношения, чем параметры реакций образования с участием серы ромбической. [c.210]

    Термохимический детектор устроен аналогично катарометру, юднако изменение электрического сопротивления нити в нем происходит за счет тепла, выделяющегося при сгорании анализируемых веществ на нагретой до высокой температуры платиновой нити, -являющейся одновременно чувствительным элементом детектора и катализатором реакции горения. Поэтому в качестве материала яити применяется только платина. Термохимический детектор прост ш удобен в обращении, достаточно чувствителен для обычной газовой хроматографии, сравнительно недорог. Однако его применение ограничено анализом только горючих веществ и необходимостью применения воздуха или даже кислорода в качестве газа-носителя. Кроме того, его чувствительность изменяется со временем, а продолжительность работы нити невелика. [c.106]

    В свободном состоянии элементы У1В группы — тугоплавкие металлы, вольфрам имеет максимальную для метал.л)н температуру плавления +3387 С. При сгорании металлов на воздухе образуются оксиды СггОз, МоОз и М Оз. 0ста, ьн1,и известные оксиды термически неустойчивы и после прокалмна-ния также переходят в СгдОз и МоОз ( 0з), выделяя либо из-быток кислорода (в случае разложения СгОз, СгОз). либо из-быток металла (для СгО, М0О2), [c.237]

    В табл. 1.14 приведена высшая теплотворная способность элементов при взаимодействии их с различными реагентами, отнесенная к единице массы продуктов сгорания. Теплотворная способность элементов при взаимодействии с хлором, азотом (кроме образования ВезН2 и ВЫ), бором, углеродом, кремнием, серой и фосфором значительно меньше теплотворной способности элементов при взаимодействии с кислородом и фтором. Большое разнообразие требований, предъявляемых к процессам горения и реагентам (по температуре, составу, состоянию продуктов сгорания и др.), делает целесообразным использование данных табл. 1.14 при практической разработке топливных смесей того или иного назначения. [c.69]

    Наличие в молекуле спиртов атомов кислорода может ра ссматри-ваться как частичное сгорание горючих элементов этих соединений. Поэтому теплота сгорания у спиртов ниже, чем у углеводородов. Вследствие этого при сгорании спиртов развивается меньшая температура, что облегчает создание надежно работающего двигателя. Кроме того, спирты имеют более высокую теплоемкость и скрытую теплоту испарения, чем нефтепродукты (табл. 189). Это обстоятельство, а также высокое относительное содержание спиртов в готовых ТШ1ЛИВНЫХ смесях (до 40—50%) дает возможность с успехом использовать спирты для охлаждения стенок камеры двигателя. Достаточно [c.612]

    Одной из наиболее харак гедных особенностей кислорода является его способность соединяться с большинством элементов с выделением, тенла и света. Чтобы вызвать такое соединение, сгорание, часто требуется нагревание до определенной тёвшературы — температуры воспламенения, так как при обычной температуре кислород является довольно инертным веществом. Однако в присутствии влаги медленное соединение с кислородом медленное сгорание) происходит уже при обычных температурах. Важнейшим примером такого процесса является дыхание живых организмов. Но и другие нротекаюш,ие при обычных температурах процессы медленного горения в природе весьма многочисленны (см также стр, 821 и сл.). [c.743]

    Этот детектор использует эффект теплоты сгорания компонентов анализируемой пробы в присутствии катализатора — платинового проволочного сопротивления, являющегося одновременно и чувствительным элементом детектора. По конструкции детектор по теплоте сгорания во многом аналогичен детектору по теплопроводности. В качестве газа-носителя может применяться только воздух или кислород, обеспечивающие горение газов. Платиновые проволоки, иногда называемые филаментами, накаливаются до температуры 800—900° С. Они также находятся в сравнительной и измерительной камерах и являются плечевыми сопротивлепиями схемы моста Уитстона. [c.25]

    Горючим в ракетных двигателях могут быть те элементы или соединения, которые в сочетании с окислителями обеспечивают высокую теплопроизводительность топливной смеси (не менее 1500—2000 ккал кг). Элементарный фтор и некоторые фторсодержащие соединения отвечают этим требованиям из всех известных элементов, способных быть окислителями, только кислород и фтор образуют топливные смеси с высокой теплопроизводительностью. Здесь показатели фтора как окислителя в сочетании с большинством элементов (за исключением углерода) значительно превосходят показатели кислорода. Это объясняется рядом причин, в частности малым молекулярным весом фтора, низкой энергией диссоциации (38 ккал молъ), экзо-термичностью реакций со многими элементами. Высокая реакционная способность фтора, ведущая к воспламенению в его среде большинства горючих веществ, обусловлена, с одной стороны, малой величиной энергии, требуемой для разрыва связей в его молекуле, а с другой, большим количеством тепла, выделяющегося при образовании связи между атомом фтора и атомом какого-либо другого элемента (например, энергия связи С — Г равна 104 ккал моль), и, следовательно, высокой стабильностью многих соединений фтора. Например, фтористый водород, образующийся при окислении водорода или водородсодержащего горючего фтором, может существовать в молекулярной форме даже при очень высокой температуре. После молекулы азота молекула НГ — одна из самых термически стабильных. Таким образом, продукт сгорания водорода во фторе — фтористый водород—по стойкости к диссоциации и термодинамическим свойствам значительно превосходит [c.35]

    В опыте с брикетами на токопроводящей графитовой основе при отсутствии в газовой среде кислорода продолжительное обыскрива-ние ведет к снижению аналитического сигнала. Это обстоятельство объясняется неблагоприятными условиями для сгорания графита как основы и затруднением выхода частиц в облако разряда. Другим фактором, объясняющим это снижение, являются процессы кар-бидообразования, поскольку наиболее ярко оно проявляется для РЗЭ и других элементов, склонных к карбидообразованию,— циркония, титана. Термодинамические исследования [8] возможных химических реакций для РЗЭ при температурах процессов выше 2000°С подтверждают высказанную точку зрения. [c.39]

    Основным топочным процессом, идущим и в камере сгорания газовой турбины, является процесс окисления горючего в среде кислорода воздуха. При этом развиваются довольно значительные температуры факела (порядка 1500—1600°С). В химическом смысле можно сказать, что процесс горения приводит к полной минерализации вещества, так как продуктами сгорания являются простейшие окислы СОг, НгО и т. д. Агрессивные элементы также окисляются сера до 50г и частично до 80з ванадий до высшего окисла УгОб. Таким образом, в камере сгорания происходит окисление с получением из сложных молекул исходного маэута простых окислов. [c.33]

    Все описанные соотношения справедливы не только для кисло-родсодержаших соединений. Так, для углеводородов применимы те же соотношения, но число атомов кислорода принимается равным нулю. Для соединений, содержащих серу, азот, фосфор, в уравнении (VI, 1) постоянство суммы теплот образования и теплот сгорания сохраняется, но в правую часть уравнения входит новый член, представляющий теплоту сгорания перечисленных элементов (точнее говоря — соответствующих простых веществ). Конечное состояние продуктов сгорания в этом случае принимается иногда условно. Здесь важно лишь, чтобы это состояние было одинаковым конечным состоянием, принятым при определени-и теплоты сгорания данного соединения. Одинаковыми должны быть и исходные состояния данного элемента в реакции, к которой относится теплота сгорания простого вещества, и в реакции образования рас-, сматриваемого соединения из простых веществ. Практически это замечание относится главным образом к сере, так как для нее па- раметры реакций образования и, в частности, теплоту образования в настоящее время часто относят к исходному состоянию ее в виде газа -с двухатомными молекулами, 5г(г). Хотя стандартное состояние такого газа в обычных условиях физически нереализуемо, термодинамически оно определено достаточно хорошо, а использование параметров его в качестве вспомогательных расчетных величин дает возможность при выражении влияния температуры [c.213]

    За исключением газов VIH группы, все элементы соединяются с кислородом экзотермически, но лишь некоторые из них можно резать струей кислорода. Данные о способности ряда чистых металлов разрезаться кислородом приведены в табл. VIII.2. Тот факт, что образующаяся при сгорании окись имеет иногда более низкую температуру плавления, чем основной металл (см. табл. VIII.2), не может дать исчерпывающего объяснения способности данного элемента поддаваться резке, хотя этот критерий наиболее часто используется [3] для объяснения поведения железных сплавов при резке. [c.600]

    Случай (а)—недостаток кислорода. При расчете исходят из 1 г топлива, содержащего (С), (Н), (N) и (О) грамматомов соответствующих элементов. Теплоту образования твердого метательного вещества принимают равной к. Ставится задача рассчитать состав продуктов реакции, образующихся при температуре и общем давлении Р . При наличии каких-либо неорганических элементов определяют сначала их продукты сгорания и вычитают необходимое количество грамматомов из исходного числа грамматомов различных элементов. [c.27]


Смотреть страницы где упоминается термин Температура сгорания элементов в кислороде: [c.29]    [c.38]    [c.8]    [c.178]    [c.23]    [c.230]    [c.223]    [c.482]    [c.491]    [c.525]   
Основы общей химии Том 2 Издание 3 (1973) -- [ c.512 , c.512 ]




ПОИСК







© 2025 chem21.info Реклама на сайте