Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Технеций радиус

    Как видим, атомные и ионные радиусы технеция и рения близки (следствие лантаноидного сжатия), поэтому их свойства более сходны между собой, чем с марганцем. [c.568]

    Чем объясняется близость атомных радиусов ниобия и тантала, молибдена и вольфрама, технеция и рения  [c.248]

    Кажущиеся радиусы атомов последних двух элементов практически одинаковы. Ионизационный потенциал меньше всего у технеция. [c.336]

    Значения металлических и ионных радиусов у рения и технеция близки (табл. 35). Поэтому и по свойствам они ближе друг к другу, чем к марганцу. Восстановительная активность металлов понижается от марганца к рению. Механические свойства их сильно зависят от чистоты. [c.421]


    Как видно из табл. 39, технеций и рений имеют близкие атомные и, ионные радиусы, поэтому близки и их свойства. Металлические свойства и химическая активность понижаются в ряду Мп—Тс—Не, [c.475]

    Характеристика элементов. Вследствие лантаноидного сжатия атомные и ионные радиусы технеция и рения практически равны, поэтому их свойства в значительной степени сходны между собой. [c.367]

    Как видно из табл. 36, технеций и рений имеют близкие атомные и ионные радиусы, поэтому они близки [c.434]

    VII группы, за исключением Мп—51, почти совершенно не изучены. Строение электронных оболочек марганца, технеция и рения близко к таковым переходных металлов VI группы, но атомные радиусы их иные. Поэтому наряду с известным подобием должно быть и некоторое отличие в строении диаграмм состояния с кремнием и структуре силицидов переходных металлов VI и VII групп. Все полученные силициды марганца и рения имеют металлический вид. [c.183]

    Метод был применен для идентификации технеция при выделении последнего из тепловыделяющих элементов реактора первой атомной электростанции [22]. Масс-спектрограмма технеция представлена на рис. 7. Определение проводили на масс-спектрометре с 60-градусным магнитным полем и камерой радиусом 15— [c.34]

    Учитывая электронную структуру атомов, их радиусы и ионизационные потенциалы, а также наиболее характерные валентные состояния, сделать вывод о том, к какому из элементов, марганцу или рению, ближе по химическим свойствам технеций. [c.210]

    Элементарный технеций представляет собой серебристо-серый металл, который, подобно рению, рутению и осмию, кристаллизуется в гексагональной системе с плотной упаковкой. Элементарная ячейка технеция состоит из двух атомов с радиусом 1,358 А [254]. Его кристаллическая структура не претерпевает изменений при давлении до 60 ООО кГ/см [90]. [c.18]

    Как видно из таблицы, технеций и рений имеют близкие атомные и ионные радиусы, поэтому они по свойствам ближе друг к другу, чем к марганцу. [c.296]

    Заполнение 4/ -оболочки оказывает весьма существенное влияние на строение электронных оболочек, атомные радиусы и физико-химические свойства металлов, следующих за лантаноидами (гафний, тантал, рений, вольфрам и т. д.), т. е. лантаноидное сжатие проявляется и за лантаноидами. Действительно, оно приводит, например, к тому, что металлический и ионный радиусы, возрастающие от титана к цирконию, от ванадия к ниобию и от хрома к молибдену, почти не изменяются при переходе к гафнию, танталу, вольфраму. Точно так же почти не увеличиваются металлические радиусы и ионные радиусы, отвечающие высшим валентным состояниям, при переходе от элементов ряда технеций—палладий к их аналогам рению—платине соответственно. Именно лантаноидное сжатие, происходящее в результате заполнения 4/ -оболочки, приводит к сближению свойств 5d- и 4с -переходных металлов, резко отличающихся по свойствам от более легких Зй-переходных металлов. Оно проявляется и на теплотах образования ионных соединений этих металлов и других химических характеристиках (см. главу II). Лантаноидное сжатие, а также заполнение 5й -оболочки, заканчивающееся у платины—золота, приводит к дополнительному сжатию внешних оболочек у последующих элементов ряда золото—радон, что отражается на возрастании ионизационных потенциалов последующих элементов. Вследствие этого потенциалы ионизации франция, радия, актиния оказываются соответственно выше потенциалов ионизации цезия, бария и лантана (см. рис. 6). В результате этого первые более тяжелые элементы оказываются менее электроположительными, чем последние. Сжатие внешних оболочек вследствие заполнения внутренних Af - и 5й -оболочек приводит к повышению энергии связи внешних электронов актиноидов по сравнению с их аналогами — лантаноидами. На это указывают данные, правда, пока довольно ограниченные по их потенциалам ионизации и имеющиеся уже более подробные сведения об их атомных радиусах (см. главу III). [c.51]


    Обращает на себя внимание то, что первый потенциал ионизации в ряду Мп—Тс—Не изменяется немонотонно от марганца к технецию уменьшается, что связано с увеличением атомного радиуса, а от технеция к ренню заметно возрастает, хотя атомные радиусы последних двух элементов близки. Это связано с заметным проникновением б8-электронов рения под экран заполненной 4/-оболочки. Увеличение первого потенциала ионизации у рения приводит к возрастанию химического благородства этого металла по сравнению с его более легкими аналогами. Все остальные потенциалы ионизации, а также сумма семи потенциалов ионизации убывают от марганца к рению. При этом соответствующие потенциалы ионизации более близки для технеция и рения и отличаются от таковых для марганца, что и подтверждает большее сходство между двумя последними представителями УИВ-группы. Об этом же говорят и близкие значения атомных радиусов, и одинаковые значения электроотрицательностей. Следует подчеркнуть, что заметное отличие марганца от двух последующих элементов УПВ-группы обусловлено не только эффектом лантаноидной контракции, но и кайносимметричностью З -орбиталей у Мп, приводящей к повышенным значениям потенциалов ионизации 1з—I,, отвечающих отрыву -электронов. [c.372]

    Обращает на себя внимание то, что первый потенциал ионизащ1и в ряду Мп — Тс — Re изменяется немонотонно от марганца к технецию з меньшается, что связано с увеличением атомного радиуса, а от технеция к рению заметно возрастает, хотя атомные радиусы последних двух элементов близки. Это связано с заметным проникновением бв-электронов рения под экран заполненной 4/-оболоч-ки. Увеличение первого потенциала ионизации у рения приводит к возрастанию химической благородности этого металла по сравнению с его более легкими аналогами. Все остальные потенциалы ионизации, а также сумма семи потенциалов ионизации убывают от марганца к рению. При этом соответствующие потенциалы ионизации более близки для технеция и рения и отличаются от таковых для марганца, что и подтверждает большее сходство между двумя последними представителями VIIB-группы. 06 этом же говорят и близкие значения атомных радиусов, и одинаковые значения электроотрицательностей. [c.474]

    Технеций — серебристо-серый металл, кристаллизующийся, подобно рению, в гексагональной сингонии. Радиус его атома равен 1,358А (гмп = 1,306 А гне = 1,373 А). Ионный радиус Тс + — 0,56 А, он равен ионному радиусу Не +, но больше, чем у Мп + (0,46 А). [c.268]

    Примечание, Ион в природе не встречается и при химических реакциях получен бв1ть не может. Радиус для хлора в состоянии иона 4-7 точно не установлен, а данные в скобках указывают на кажущееся состояние, для которого и приведен радиус иона. Радиусы атомов Р, С1, Вг и I — ковалентные, а марганца, технеция и рения наблюдаются в металлических структурах. [c.358]

    Характеристика элемента. Расхождение между первым элементом побочной подгруппы и двумя последующими, которое начинает заметно проявляться в V группе, в подгруппе VHB настолько велико, что химия марганца резко отличается от химии технеция и рения, следующих за ним в подгруппе. Даже изменение радиуса при переходе в соответствующих периодах к элементам подгруппы VHB носит разный характер. Радиус марганца больше, чем у предшествующего ему в периоде хрома, а у технеция и рения меньше, чем у молибдена и вольфрама соответственно. Устойчивым для марганца является небольшая степень окисления +2, а высшая +7 проявляется только в соединениях с кислородом МпО Г, МщОт и МпОзР. В таком состоянии марганец является сильным окислителем и стремится восстановиться до Мп(П) или Mn(IV). Для него известно еще одно состояние +6, но оно крайне неустойчиво и может существовать только как промежуточное. [c.365]

    В настоящее время получено большое число таких радиоактивных изотопов существует лишь немного элементов, которые нельзя активировать таким способом. В частности, были получены изотопы элементов технеция и прометия, которые в природе не встречаются. Радиоактивные изотопы образуются при бомбардировке различными частицами, такими, как нейтроны ( г, или просто га), протоны ( Н, или р), а-частицы (гНе, или а), дейтроны (1Н, или с1), у-лучи и даже более тяжелые ядра. Так как нейтроны не имеют заряда, они не отталкиваются при приближении к ядрам, даже если их энергия очень мала (медленные, или тепловые, нейтроны). Следовательно, нейтроны очень эффективны для проведения ядерных превращений, и большинство искусственных радиоактивных изотопов получены при облучении иейтроиами в ядерном реакторе (рис. 5.16). Другие бомбардирующие частицы заряжены, и, для того чтобы преодолеть возникающие силы отталкивания, необходимо сообщить им очень высокие энергии. Этого достигают проведением бомбардировки в ускорителях, таких, как циклотроны. В них заряженные частицы движутся по круговым траекториям под действием магнитного поля, перпендикулярного плоскости траектории. Частицы таким образом многократно проходят через металлическую камеру (которой придают различную форму), несущую переменный электрический заряд. Частицы, проходящие через камеру с определенной фазой и угловой скоростью, ускоряются и постепенно приобретают энергию, во много раз превышающую энергию, соответствующую приложенному напряжению. Если магнитное поле постоянное и частота колебаний электрического заряда определенная, то скорость (т. е. энергия) частиц будет пропорциональна радиусу их круговой траектории. Типичный [c.160]

    KAl(504)2 12НгО изоморфны с хромокалиевыми квасцами K r(S04)2-12НгО, и замещением иона Сг + на ион АР+ можно приготовить смешанные квасцы. В этом случае оба катиона имеют одинаковый заряд и близкие ионные радиусы (/"А1 = 53 пм, Гсг = 62 пм). Сходны между собой ионы (г— = 72 пм), Мп2+ (г = 82 пм) и Zn2+ (г = 75 пм) несмотря на то, что катион магния имеет конфигурацию благородного газа (s p ), а другие содержат й-электроны (d и ). Близкое сходство ионов лантаноидов (см. разд. 16) также объясняется их одинаковым зарядом и примерно одинаковыми размерами ионов. Такое сходство, которое больше зависит от заряда, чем от электронной конфигурации, можно назвать физическим — это сходство таких физических свойств соединений, как кристаллическая структура и, следовательно, растворимость и склонность к осаждению. Так, соосаждение чаще связано с одинаковыми степенями окисления, чем с природой ионов. Например, элемент — носитель для радиоактивного индикатора не обязательно должен быть из того же химического семейства, что и радиоактивный изотоп. Технеций (VH) может соосаждаться не только с перренат-ионом, но и с перхлорат-, перйодат- и те-трафтороборат(П1)-ионами. Соединения свинца (П) имеют примерно ту же растворимость, что и соединения тяжелых щелочноземельных элементов. Тал-лий(1) г — 150 пм) по физическим свойствам часто напоминает катион калия (г = 138 пм). Например, он образует растворимые соли—нитрат, карбонат, ортофосфат, сульфат и фторид. Катион таллия (I) способен внедряться во многие калийсодержащие ферменты, в результате чего продукты метаболизма становятся чрезвычайно ядовитыми. Однако электронное строение катионов также может влиять на свойства соединений, например, на поляризацию анионов (см. разд. 4.5), поэтому по отношению к тяжелым галогенам катион Т1+ больше напоминает катион Ag+, чем К+. [c.388]


    Ti, Zr, Hf, Nb и Та найдена дг-фаза, изоструктурная с а—Мп-фазой. В указанных сплавах она стабилизируется вторым компонентом только в том случае, если его атомный радиус больше радиуса атома технеция, а концентрация стабилизируюшего элемента зависит от положения его в периодической системе относительно технеция. [c.56]

    Понижение высших валентных состояний в связи с неотделением всех -электронов приводит к уменьшению эффективного заряда ядра и возрастанию ионных радиусов у переходных металлов 3 (Сг " —Си ), Ы (Ни —Ад ) и 5й (Не Аи ). Эти обстоятельства имеют результатом периодическое изменение ионного радиуса с возрастанием атомного номера. Другой важной закономерностью является плавное уменьшение ионных радиусов у ионов с одинаковыми зарядами Ме , Ме " , Ме , Ме " вследствие увеличения числа сохраняющихся у этих ионов внешних -электронов. Соответствующие слегка наклонные линии для металлов больших периодов представляют эффекты 3 -, 4 - и 5 - жaтия вследствие постепенного увеличения числа -электронов при возрастании атомного номера. Третья характерная особенность заключается в появлении дополнительного максимума, отвечающего некоторой устойчивости наполовину заполненной -оболочки. Он ясно виден в ряду 3 -пepexoдныx металлов и приходится на ион марганца Мп с конфигурацией В менее выраженной форме такого максимума можно ожидать в 5-м и 6-м периодах у технеция (4 ) и рения (5 ). [c.144]


Смотреть страницы где упоминается термин Технеций радиус: [c.426]    [c.331]    [c.24]    [c.26]    [c.26]    [c.35]    [c.194]   
Основы общей химии Том 2 Издание 3 (1973) -- [ c.147 ]




ПОИСК





Смотрите так же термины и статьи:

Технеций



© 2025 chem21.info Реклама на сайте