Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Титан электронное строение

    Положение титана в периодической системе химических элементов и строение атома. Титан — элемент главной подгруппы IV группы. Его электронная формула следующая  [c.109]

    Благодаря тому, что атомы и ионы аналогичных элементов побочных подгрупп пятого и шестого периодов имеют не только сходное электронное строение, но и практически совпадающие размеры,— а их химических свойствах наблюдается гораздо более близкое сходство, чем в случае элементов четвертого и пятого периодов. Так, цирконий по своим свойствам значительно ближе к гафнию, чем к титану, ниобий сходен с танталом в большей степени, чем с ванадием и т. д. [c.642]


    Титан, ванадий и их важнейшие соединения. Элементы подгруппы хрома. Строение электронных оболочек атомов этих элементов. [c.268]

    Ванадий, ниобий и тантал между собой и с металлами, близко расположенными к ним Q периодической системе (подгрупп железа, титан,1 и хрома), образуют металлические твердые растворы. По мере /величения различий в электронно.м строении взаимодействую- [c.541]

    Металлохимия элементов V В-г р у п п ы. Ванадий, ниобий и тантал в любых комбинациях образуют друг с другом непрерывные твердые растворы, что отмечается также в системах, образованных этими металлами с изоструктурными (ОЦК) полиморфными модификациями других переходных металлов, не сильно отличающихся по электронному строению. Так, ванадий образует непрерывные твердые растворы с Титаном, металлами подгруппы хрома, 6-марганцем, а-железом ниобий образует непрерывные растворы в твердом состоянии с / -модификациями всех металлов подгруппы титана, молибденом, вольфрамом и -) ураном тантал ведет себя в этом отношении аналогично ниобию. В тех случаях, когда сочетание металлохимических факторов не благоприятствует полной взаимной растворимости, при взаимодействии с (i-металлами образуются ограниченные твердые растворы с широкими областями гомогенности. [c.431]

    Между титаном и цирконием имеется несомненное сходство, но есть и различие. Между цирконием и гафнием наблюдается исключительное химическое родство, объясняемое не только подобием строения электронных оболочек, но и тем, что их атомные и ионные радиусы почти одинаковы (следствие лантаноидного сжатия ). Атом же титана значительно меньше, поэтому валентные электроны у циркония и гафния расположены на больших расстояниях от ядра, более эффективно экранированы от него внутренними электронными оболочками и, следовательно, менее прочно связаны с ядром. Потенциалы иониза- [c.208]

    Сходство элементов в диагональном направлении обусловлено близостью внешних оболочек ионов и близостью атомных радиусов в соответственных состояниях (натрий—кальций, магний-скандий, алюминий—титан, титан—ниобий, ванадий—молибден, молибден-рений, родий—платина и др.). Несходство же таких соседей в диагональном направлении, как, например, Mg и В, Al и С, Si и N, Zr и V, Nb и Сг, Мо и Мп, обусловлено сильным различием электронного строения и размеров оболочек ионов в высших валентных состояниях. [c.159]

    Иначе ведет себя титан, атом которого имеет следующее строение (1 5 2 5 2 р 3 s 3p )3 24 2, Четырехвалеитный титан, электронная оболочка которого отвечает взятой скобки части формулы, [c.69]

    Такого плана я пытался придерживаться при подготовке второго издания Общей химии . Мною введены две новые главы, посвященные атомной физике (гл. П1 и Vni). В этих главах довольно подробно рассмотрены вопросы, связанные с открытием рентгеновских лучей, радиоактивности, электронов и атомных ядер, описана природа и свойства электронов и ядер, изложена квантовая теория, фотоэлектрический эффект и фотоны, теория атома по Бору, отмечены некоторые изменения наших представлений об атоме, внесенные квантовой механикой, рассмотрены другие вопросы учения о строении атома. Все это позволит студенту первого курса вычислить энергию фотона света данной длины волны и предсказать, приведет ли поглощение света данной длины волны к расщеплению молекулы на атомы. Некоторые разделы элементарной физической химии в книге изложены подробнее, чем это было сделано в первом издании. Введена отдельная глава, посвященная биохимии. Значительной переработке подверглось изложение химии металлов. Рассмотрение вопросов, относящихся к химии металлов, начинается теперь с главы, в которой показаны характерные особенности металлов и сплавов и описаны методы добычи и очистки металлов. Затем следуют три главы, посвященные химии переходных металлов в первой главе рассмотрены скандий, титан, ванадий, хром, марганец и родственные им металлы во второй — железо, кобальт, никель, платиновые металлы в третьей — медь, цинк, галлий, германий и ближайшие к ним по свойствам металлы. В той или иной мере пересмотрено и большинство других глав. [c.10]


    Необходимо отметить весьма важные свойства металлов переходных групп, с которыми, несомненно, связаны и их высокая способность к пассивированию и их растворение. Известно, что поведение этих металлов в водных растворах является весьма сложным и зависит от множества факторов. Оно определяется возможностью протекания различных процессов на их поверхности комплексообразования, гидролиза, а также полимеризации, что обусловливается особенностью строения их электронных оболочек. Многие металлы, в том числе титан, цирконий, ниобий, тантал, молибден, ванадий, [c.74]

    Введение в ионообменную хроматографическую систему комплексообразующих реагентов кардинально расширило возможности метода. В образовании комплексных соединений проявляются тонкие особенности электронного строения атомов элементов, более полно выявляется индивидуальность их свойств, поэтому резко повысилась степень однократного разделения смесей, во многом определяющая эффективность хроматографического опыта в целом. Образование многими металлами отрицательно заряженных комплексов не только позволило облегчить перемещение многозарядных катионов по слою катионита, но и широко использовать аниониты. Не случайно поэтому именно хроматографические системы с комплексообразующими реагентами привлекли особое внимание как специалистов в области комплексных соединений [7], так и аналитиков. В качестве иллюстрации достаточно упомянуть хроматографическое разделение смесей, включающих цинк, кадмий, индий, галлий, титан, цирконий, торий [8—И]. Заслуживают также упоминания систематические исследования хроматографических свойств практически всех метал,лов в растворах фто- [c.231]

    В атомах, следующих за скандием элементов, продолжается заполнение электронами Зг/-уровпей. К этим элементам относятся титан, у которого два Зй-электрона, ванадий, имеющий Зс -электрона, т. е. V(l) (2) (3s) (Зр) (3d) (4s) . Строение атома следующего элемента — хрома— имеет вид Сг(1) (2) (3s) (3p) (3ii) (4s) так как оказывается, что одному s-электрону выгоднее возвратиться на 3 -уровень. Атом марганца имеет также пять Зс/-электронов и два 4s. В атоме железа шесть 3d-электронов Fe(l) (2) (3s)2(3p) (3d) (4s)2, в атоме кобальта — семь З -электронов и в никеле — восемь. Общее количество электронов, которое может поместиться на -оболочке, равно 10 [2(2-2+1)]. Заполнение Зс -уровня или оболочки завершается в атоме меди (2=29) Си(1) [c.317]

    Титан и ванадий-элементы 1VB и VB подгрупп соответственно, относятся к семейству d- элементов. Строение внешних электронных оболочек (n-l)d s (для под-грушп.1 титана) и (n-l)d ns (для ванадия и его аналогов). Это обусловливает возможные степени окисления +2, +3, +4 для элементов IV В и +2, +3, +4, +5 для элементов V В подгруппы. [c.34]

    Подгруппа титана. Электронное строение атомов элементов подгруппы титапа (титап, цирконий, гафний и торий) характеризуется наличием восьми электронов на -орбите. У тория, вероятио, правильнее предполагать существование ( /-структуры. Однако, по входя глубоко в рассмотрение правильности представлений о группе актинидов, в плане данной статьи удобнее рассматривать торий как член подгруппы титана, поскольку но своим химическим свойствам он во многом близок к цирконию и гафнию. В свете представлений об электронных оболочках атомов этот факт отвечает тому, что энергии s d - и /-электроиов весьма близки между собой, вследствие чего цирконий, гафний и торий во всех своих соединениях яв-.1ЯЮТСЯ, как правило, четырехвалептпыми. Лишь титан можно восстановить до трех- и даже до двухвалентного состояния. Ионные радиусы элементов подгруппы титана, как это видно из приводимых ниже данных, закономерно возрастают от титана к торию  [c.185]

    По внешнему электронному уровню, радиусам атомов и ионов группа делится на две подгруппы IVA — С, Si, Ge, Sn, Pb и IVB — Ti, Zr, Hf, Ku. По структуре предвнешнего электронного уровня главную подгруппу IVA можно разделить на два семейства С, Si к семейство германия. Величины / ат и Rkoh изменяются закономерно от С к РЬ, и, значит, строение предвяешнего электронного уровня мало сказывается на свойствах элементов. Главная роль принадлежит изменению размеров атома, т. е. электронам внешнего уровня. В IV группе ясно проявляется тенденция усиления металлических свойств с увеличением порядкового номера при сохранении подобия внешнего энергетического уровня электронов. Углерод типичный неметалл, кремний фактически тоже неметалл титан, сохраняя в свободном состоянии качества металла, в степени окисления -Ь4 образует связи ковалентного характера и в некоторых отношениях соединения его с этой степенью окисления похожи на элементы подгруппы IVA (Si, Ge и особенно Sn). Германий — полупроводник, а остальные элементы — металлы. Изменение степени окисления в соединениях элементов двух подгрупп IVA и IVB взаимно противоположно в главной подгруппе с увеличением порядкового номера устойчивость высшей степени окисления падает (для свинца более стабильно состояние +2), а в подгруппе т та-на растет. [c.326]

    Вопросу о расщеплении уровней -электронов при образовании комплексов переходных элементов посвящено очень много работ. Например, только вопрос о полосах поглощения соединений никеля (III) рассматривается более чем в 1000 работах (см., например, перечень в работе [13]). Таким образом, имеется много оснований рассматривать с указанной точки зрения связь между окраской и строением -орбиталей. С другой стороны, столь большое количество исследований по частному вопросу указывает, что решение вряд ли можно считать окончательным. Кроме того, обращает внимание, что в различных теоретических исследованиях обсуждаются главным образом свойства ионов, имеющих незаполненные й-орбитали, например титан (III), ванадий (II—IV) и т. д. Ионы же переходных элементов, имеющие на внешней орбите 8 или 18 электронов, например титан (IV), ванадий (V) и т. п., почти не рассматриваются. Далее, в литературе неоднократно указывалось, что отнесение отдельных полос, например для соединений железа [c.74]

    Этим объясняется широкое развитие И. среди переходных металлов по группам, горизонтальным и диагональным рядам пераодаческой системы элементов. В связи с этим при легировании сталей и чугунов главнейшими металлами являются титан, ванадий, хром, марганец, никель, молибден и вольфрам. В первом приближении период решетки твердых растворов аддитивно связан с периодами решеток компонентов. При несовершенном И. с понижением т-ры может происходить распад твердых растворов с образованием двух- или многофазных систем. Подобное яв-.тоние используют для старения металлов, т. е. получения после закалка дисперсноупрочненных сплавов (см. Дасперсноупрочненные материалы), характеризующихся повышенной твердостью, изменением магн. и электр. св-в. В твердых растворах второго рода атомы компонентов отличаются электронным строением и геометрическими характеристиками. В междоузлия металла внедряются атомы неметалла, не изменяя структуры исходного металла (сплава), что предполагает низкую концентрацию внедренных атомов. Твердые растворы внедрения образуют водород, углерод и азот. Содержание углерода в твердом растворе альфа-железа (см. Железо) — 0,025 ат.%, в гамма-железе — 2,03, в твердом растворе ниобия — 0,02 ат.%. Увеличение концентрации усиливает хим. взаимодействие атомов металла и неметалла, изменяет электронную и кристаллическую структуру, вызывает образование внедрения фазы,. Расчет радиусов междоузлий для гексагональных плотноупакованных, гранецентрированных кубических и объемноцентрированных кубических структур позволил сделать вывод о возможности внедрения атомов при гх/гщ < 0,59, где — радиус атома неметалла — радиус ато- [c.487]


    Гафний. Гафний непосредственно следует за лантанидами. До появления теории строения атомов элемент с порядковым номером 72 искали в редкоземельных минералах. Но из теории строения атомов следовало, что достройка третьего (снаружи) электронного слоя у редкоземельных металлов заканчивается на элементе с порядковым номером 71 элемент с порядковым номером 72 должен по строению атома быть сходным уже не с редкоземельными металлами, а с титаном и цирконием. После этого гафний незамедлительно и был открыт при помощи рентгеноспектрального анализа в циркониевых рудах. [c.672]

    Цирконий соответственпо строению электронной оболочки н, следовательно, своему месту в периодической системе элементов Д. И. Менделеева является аналогом титана в физико-химическом отношении. Для металла циркония это выражается в подобии его титану в отношении физических, механических, технологических, коррозионных свойств и характера образуемых сплавов. Особенность циркония — низкое сечение захвата тепловых нейтронов — в сочетании с высокими конструкционными и коррозионными свойствами, тугоплавкостью сделала его очень ценным металлом в некоторых отраслях иромышленности. Поэтому в последние 15—20 лет происходит широкое освоение циркония разработка методов получения и осуществление производства циркония высокой чистоты, детальное исследование его свойств и сплавов. [c.3]

    Спектр оже-электронов (так их и зовут) позволяет определять строение твердой поверхности еще лучше, чем ЭСХА. Чувствительность метода не менее высока, интенсивность каждой линии строго пропорциональна количеству соответствующих атомов и — это особенно удобно — вид спектра совершенно не зависит от энергии возбуждающего облучения. На рис. 85 показан оже-спектр, с помощью которого американские исследователи в начале 1988 г. доказали природу одного простого, но очень оригинального соединения. Оно образуется в виде тонкой пленки при нагреве комплекса, содержащего титан, бор, водород и, сверх того, молекулу органического растворителя. На спектре отчетливо видны линии, характерные для титана и бора легко определяется, что соотношение Т1 В равно 1 2,07. Формула вещества, значит, не сложна, но экстравагантна Т В  [c.209]

    Элементы подгруппы титана относятся к числу переходных — они содержат недостроенную электронную оболочку п—Электронная подкладка у атомов таких элементов, т. е. оболочка, предшествующая слою валентных электронов, относится к 8-электронному типу (имеет благороднотазовое строение). Как известно, в подгруппах таких элементов, ввиду жесткости (малой деформируемости) 8-злект-ронных оболочек (в отличие от 18-электронных, характерных для ностпереходных элементов), с ростом атомного номера и радиуса ато-ма (иона) наблюдается уменьшение поляризующего действия. Наиболее сильным поляризующим действием (при прочих равных усло виях) обладает титан из-за малого размера атома (иона) в этой подгруппе он сильнее всего удерживает валентные электроны и поэтому относительно легко может быть переведен в состояние с более низкой степенью окисления, чем обычное валентное состояние, характеризуемое степенью окисления +4. [c.105]

    Титан (Ti) и ванадий (V) — элемелгы побочных подгрупп соответственно четвертой и пятой групп периодической системы элементов Д. И. Менде аеева. Элект-р онное строение атомов таково Ti ls 2s 2/5 3s 3/j 3d-4,s , V b 2s 2p 3s= 3jO =3ii 4s2 (валентными являются электроны 3d- и 45-подуровней). Титан проявляет в соединениях степени окисления от +2 до +4, ванадий — от +2 до +5. [c.135]

    В типичных металлоценах [М(ср)2] связи С—С имеют равную длину, а сами циклы параллельны. Имеется, однако, несколько производных, в которых кольца наклонены одно по отношению к другому. Например, [Ке(ср)2Н] и [Т1 (ср)2С12]5 (рис. 13.16), в которых пространственное включение дополнительных лигандов препятствует параллельности колец. Кроме того, неподеленная пара электронов атомов 5п и РЬ приводит к аналогичному вращению колец в [5п(ср)2] и [РЬ(срЬ]. Наконец, имеются соединения с более чем двумя циклопентадие-нильными группами. Примерами являются трис (циклопентадие-нил)титан и тетракис(циклопентадиенил)уран (см. рис. 13.16). Другой тип строения имеет ион [Н12(ср)з]+ с послойным расположением атомов никеля и циклопентадиенильных циклов (рис. 13.17) [58,59]. [c.434]

    Спектры ЭПР азиновых, оксазиновых и тиазиновых красителей Фиолетового Лаута ( IX), Метиленового синего (СХ), Метиленового зеленого ( I52020, Основной зеленый 5) Галлоцианина ( I 51030, Протравной синий 10) и Сафранина В экстра, снятые после облучения красителей рентгеновскими лучами в течение 5—10 мин в концентрированной серной кислоте в присутствии этилового спирта или бензойной кислоты, показывают, что красители образуют те же парамагнитные частицы, которые получаются при восстановлении хлористым титаном идет протонирование центрального атома азота, а неспаренный электрон делокализуется между серой (или кислородом) и азотом. Строение ионов, полученных при радиолитическом восстановлении Фиолетового Лаута, можно представить резонансными структурами СХП и XIII [116]  [c.149]

    В настоящее время можно считать установленным, что в ходе слияния растворов исходных компонент в системе (1) происходит восстановление четырехвалентного титана и что во всех случаях каталитически активной является система (2). До недавнего времени считалось, что хотя трехвалентный титан парамагнитен в силу нечетности числа электронов, однако измерение спектра ЭПР его возможно только при очень низких температурах, при которых время релаксации будет достаточно малым. В первой же работе А. Е. Шилова и И. И. Бубнова [26] было найдено, однако, что при смешении растворов Т1С14 и А1 (С4Нн)з в октане при комнатной температуре образующийся осадок, с которым обычно связывают каталитическую активность, дает вполне отчетливый сигнал ЭПР с д 2. Поскольку единственным парамагнитным атомом в системе является трехвалентный титан, полученный результат означал, что он присутствует в системе в виде такого своеобразного соединения, для которого указанное выше ограничение несущественно. Поэтому представляло большой интерес установить истинное строение этого соединения. [c.164]

    IV группа охватывает, как известно, длинный ряд элементов, строение рлектронной оболочки которых проходит, если так можно выразиться, критические моменты титан и цирконий— V-электроны, гафний —только что закончилось заполнение /-оболочки, что позволяет провести параллель с церием, у которого имеет место начало заполнения /-оболочки, и наконец, торий, у которого снова, повидимому, начинает заполняться /-оболочка. Очень интересно, что у титана проявляется исключительная способность образовывать фазы с широчайшим интервалом устойчивости по составу. [c.465]


Смотреть страницы где упоминается термин Титан электронное строение: [c.310]    [c.73]    [c.260]    [c.88]    [c.114]   
Основы общей химии Том 2 Издание 3 (1973) -- [ c.89 , c.227 , c.492 , c.645 ]




ПОИСК





Смотрите так же термины и статьи:

Титан строение

Электронное строение

электронами электронное строение



© 2025 chem21.info Реклама на сайте