Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Трансурановые элементы синтез

    Для синтеза трансурановых элементов используются реакции, в которых участвуют нейтроны, дейтроны, а-частицы с энергией порядка 30—40 МэВ и многозарядные ионы ( Вз+, [c.663]

    Успехи по синтезу и изучению трансурановых элементов в основном связаны с работой американских ученых Калифорнийского университета (г. Беркли) под руководством Г. Сиборга и ученых социалистических стран Объединенного института ядерных исследовании (г. Дубна) под руководством Г. Н. Флерова. [c.663]

    Ядерные реакции происходят при бомбардировке ядер мишени другими ядрами, ускоренными до такой скорости, которая позволяет им преодолеть электростатическое отталкивание между положительно заряженными ядрами. Нейтроны взаимодействуют с бомбардируемыми ими ядрами легче, поскольку они не имеют электрического заряда. Одним из важных примеров использования ядерных реакций служит получение изотопов для химии, промышленности и медицины. Другим применением является синтез новых трансурановых элементов. Таким путем были получены искусственные элементы с порядковыми номерами до Z = 105, и есть основания предполагать, что элементы с порядковыми номерами около 114 окажутся более устойчивыми, чем полученные до сих пор. [c.435]


    Для синтеза трансурановых элементов используются реакции, в которых в качестве бомбардирующих частиц участвуют нейтроны, дейтроны, а-частицы с энергией порядка 30—40 МэВ и многозарядные ионы ( "В +, +, " N +, 0 +, Ые" + ) с энергией до 130 МэВ. Так, изотоп элемента курчатовия Кч был впервые получен Г. И, Флеровым с сотрудниками в 1964 г в результате реакции [c.15]

    Перспективы синтеза новых элементов. Период полураспада трансурановых элементов быстро уменьшается с ростом заряда ядра. Так, для наиболее устойчивого изотопа Ри период полураспада составляет 70 млн. лет, Вк—7000 лет, Es — 2 года, Md — 80 дней. Для изотопов Ки период полураспада оценивается в 70—0,1 сек, для [c.47]

    Осуществлен синтез пятнадцати трансурановых элементов. Наибольшие заслуги в этой области принадлежат коллективам, возглавляемым Г. Сиборгом (США) и Г. Н. Флеровым (СССР). Области применения изотопов плутония (239, 240, 241) и других синтетических элементов настолько обширны, что требуют специального описания. Отметим лишь, что элемент 94 — плутоний — прекрасное ядерное горючее для атомных электростанций. [c.73]

    До появления периодического закона и периодической системы Д. И. Менделеева все химические элементы были открыты не только случайно, но и неожиданно. Периодическая система дала возможность прогнозировать существование еще не открытых элементов, точно описывать их свойства и до известной степени даже планировать их открытие. Разве синтезы трансурановых элементов Г. Н. Флеровым в СССР и Г. Т. Сиборгом в США не свидетельствуют о планировании открытия элементов  [c.228]

    Синтез трансурановых элементов. Спонтанное деление [c.226]

    В качестве примера приведем несколько реакций синтеза трансурановых элементов  [c.403]

    Химические элементы и изотопия. До открытия изотопии на основании результатов химического анализа принимали, что простые и сложные вещества состоят из атомов, химически неделимых. Число индивидуальных атомов (до синтеза трансурановых элементов) принимали равным 92. Каждый вид атомов характеризовался своим атомным весом и своими химическими отношениями, которые рассматривались в их взаимосвязи. Таковы атомы литий с атомной массой 6,939, хлор — 35,453, цинк — 65,37 и т. д. [c.38]

    Синтез трансурановых элементов. [c.286]

    Синтез элементов 94—104. За последние два десятилетия синтезированы еще 11 трансурановых элементов путем бомбардировки соответствующих мишеней нейтронами, а-частицами и легкими ядрами. Приведем следующие примеры ядерных реакций  [c.286]

    По мере увеличения возможностей для осуществления ядерных реакций посредством бомбардировки ядер атомов другими ядрами расширились и перспективы синтеза атомов тяжелых трансурановых элементов. В 1940 г. первый из них появился на свет — это был нептуний, полученный в виде изотопа-239 (р-активен) при бомбардировке урана-238 потоком нейтронов. Из нептуния получается изотоп плутония-239, способный к делению. Цикл превращения плутония ведет к америцию  [c.208]

    Получение нептуния и плутония открыло пути к синтезу ядер элементов, расположенных за ураном — трансурановых элементов. Так, из плутония в 1944 г. удалось получить кюрий, порядковый номер которого 96  [c.208]

    Ядерные реакции широко используются для синтеза трансурановых элементов. Большие работы в этом направлении проводятся у нас в стране в Объединенном институте ядерных исследований в г. Дубне под руководством акад. Г. Н. Флерова. Там впервые были синтезированы элементы с порядковыми номерами 102, 103, 104, 105, 106, 107. Ведутся работы по синтезу элементов с более тяжелыми ядрами. [c.23]

    В Объединенном институте ядерных исследований в настоящее время ведутся работы по синтезу элемента № 114. Однако для трансурановых элементов характерна неустойчивость (нестабильность) их ядер. Причем она резко возрастает от плутония — = = 50 с до курчатовия 7i/2 = 0,4 с. Поэтому сначала считали, что [c.99]


    Следующие ядерные реакции были впервые использованы для синтеза трансурановых элементов  [c.583]

    В последние годы в работах по синтезу трансурановых элементов были достигнуты новые успехи благодаря использованию в качестве снарядов более тяжелых частиц, чем нейтроны, дейтероны и а-частицы. Были созданы приборы, которые ускоряли ядра таких элементов, как Ве, С, Ы, О, Ые, Аг. Главным преимуществом применения таких частиц является возможность сразу увеличить атомный номер синтезируемого элемента на несколько единиц. Данным способом были получены некоторые трансурановые элементы, например калифорний и фермий  [c.418]

    Ядерные реакции и синтез трансурановых элементов представляют собой ядерные процессы, осуществляемые и управляемые человеком. Основной метод возбуждения ядерных реакций осуществляется по схеме частица- ядро-мишень новое ядро, новые частицы. [c.65]

    Большие достижения по синтезу и идентификации искусственных химических элементов были бы совершенно немыслимы- без знания периодического закона. Это касается как получения технеция, прометия и астата, так и синтеза трансурановых (следующих за ураном) элементов. Успех в развитии физики и химии трансурановых элементов, в создании основ теории расщепления ядер во многом обусловлен законом Д. И. Менделеева. [c.86]

    Для синтеза трансурановых элементов используются реакции, в [c.708]

    Экспериментальное достижение области сверхтяжелых трансурановых элементов (синтез на ускорителях) окажется, по-видимому, нелегкой задачей. Необходимо разработать новые способы регистрации и идентификации сверхтян<елых ядер нужно ускорить новые, более тяжелые частицы (наиболее тяжелая из частиц, используемых в настоящее время для синтеза,— аргон). Однако уже ионы аргона и кальция дают возможность попытаться синтезировать некоторые изотопы элемента 114 в реакциях, идущих через стадию образования составного ядра с последующим испарением нескольких нейтронов. Правда, продуктами при этом будут нейтронно-дефицитные ядра и значительно удаленные от предполагаемой нейтронной оболочки N = 184. Реакция Ри -f Zn -v 124 представляется более обещающей, так как позволяет приблизиться к этой оболочке, оставаясь в то же время по числу протонов в пределах предсказываемой области относительной стабильности [42]. [c.18]

    Американский физик и химик. Р. в Валлейо (штат Калифорния). Окончил Калифорнийский ун-т (1937). В 1942—1946 работал в Чикагском ун-те, с 1946 — в Калифорнийском ун-те в Беркли. Научные работы посвящены синтезу и изучению трансурановых элем. Принимал участие (преимущественно с Г. Т. Сиборгом) в открытии трансурановых элементов, синтезе их изотопов — кюрия-242 (1944), америция-241 (1945), берк шя 243 (1949), калифорния-244 (1950), фермия (1952), эйнштейния (1952), менделеевия-256 (1955). В 1961 сообщил о син- [c.122]

    Что же последует за синтезом трансурановых элементов Появятся ли новые радиоактивные и очень краткоживущие частицы, подобные элементам с порядковыми номерами от 97 до 105 В настоящее время существует мнение, что есть возможность достичь новой области устойчивости, которая может включать даже нерадиоактивные элементы. Расчеты, основанные на существующих моделях оболочечного строения ядра, заставляют предположить, что элемент ffJXX со 114 протонами и 184 нейтронами (оба эти числа являются магическими в оболочечной теории адра) должен представлять собой островок устойчивости среди области неустойчивости. На рис. 23-6 дано трехмерное изображение графика, представленного на рис. 234 вдоль вертикальной оси отсчитывается мера устойчивости ядер. Если удастся найти средства получения элементов в окрестности i xx, это должно привести к целому набору сравнительно долгоживущих ядер. Поиски в указанном направлении предпринимались в Беркли в числе возможных реакций рассматривались такие  [c.423]

    Синтез и изучение трансурановых элементов основывается на периодическом законе Д. И. Менделеева. В свою очередь исследования в области трансурановых элементов расширяют представления о структуре периодической системы. Несмотря на огромные достижения науки за прошедшее столетие, периодическая система в принципах построения не претерпела сколько-нибудь заметных изменений. Уместно здесь вспомнить известное высказывание Д. И. ЛАенделеева Периодическому закону будущее не грозит разрушением, а только надстройка и развитие обещает . [c.16]

    Для синтеза трансурановых элементов используются реакции, в которых участвуют нейтроны, дейтроны, а-частицы с энергией порядка 30—40 Мэе и многозарядные ионы ( В +, 143 +,, 0 +, 22Ые1 +) с энергией до 130 Мэе. [c.46]

    Существенный вклад внесла аналитическая химия в решение такой важной проблемы современной науки, как синтез и изучение свойств трансурановых элементов. Предсказание химических свойств трансурановых элементов оказалось более сложным, чем для элементов, входящих в периодическую систему в ее старых границах, так как не было ясности в распределении новых элементов по группам. Трудности усугублялись и тем, что до синтеза трансурановых элементов торий, протактиний и уран относились соответственно к IV, V и VI группам периодической системы в качестве аналогов гафния, тантала и вольфрама. Неправильное вначале отнесение первого трансуранового элемента № 93 к аналогам рения привело к ошибочным результатам. Химические свойства нептуния (№ 93) и плутония (№ 94) показали их близость не с рением и осмием, а с ураном. Было установлено, что трансурановые элементы являются аналогами лантаноидов, так как у них происходит заполнение электронного 5/- слоя, и, следовательно, строение седьмого и шестого периодов системы Д. И. Менделеева аналогично. Актиноиды с порядковыми номерами 90—103 занимают места под соответствующими лантаноидами с номерами 58—71. Аналогия актиноидов и лантаноидов очень ярко проявилась в ионообменных свойствах. Хроматограммы элюирования трехвалентных актиноидов и лантаноидов были совершенно аналогичны. С помощью ионообменной методики и установленной закономерности были открыты все транс-кюриевые актиноиды. Рекордным считается установление на этой основе химической природы элемента 101 — менделевия, синтезированного в начале в количестве всего 17 атомов. Аналогия в свойствах актиноидов и лантаноидов проявляется также в процессах экстракции, соосаждения и некоторых других. Экстракционные методики, разработанные для выделения лантаноидов, оказались пригодными и для выделения актиноидов. [c.16]

    Особый интерес представил синтез ряда трансурановых элементов, расположенных в периодической системе после урана. При поглощении нейтронов ядрами изотопа д и образуется /9-радиоактивный изотоп урана с периодом полураспада 23 мин. Испуская 3-частицы, и превращается в новый элемент — нептуний 9зНр. Было установлено, что дзКр тоже радиоактивен. Подвергаясь /3 -распаду, он превращается в элемент с порядковым номером 94 — д Ри — плутоний (Ри). К настоящему времени искусственным путем получены тяжелые элементы вплоть до элемента с порядковым номером 109 — мейтнерия. [c.95]

    Главным стимулом развития химии экстремальных состояний, несомненно, являются достижения ядерной энергетики. Разве можно указать предел тем возможностям, которые открываются после поразительных успехов в применении радиоактивности к химии — спраиаивает английский физик С. Ф. Пауэлл [15]. Тот же вопрос ставит американский физик н химик Г. Т. Сиборг, рассматривая возможное влияние изобилия ядерной энергии на судьбы нашей цивилизации. Давайте перенесемся мысленно в будущее — лет на 50—100 вперед, — говорит он, рисуя при этом картину коренного преобразования отношений человека к веществу. — Можно представить себе, что к тому времени мы будем иметь гигантские электростанции, использующие энергию деления, а возможно, и синтеза ядер. Они будут вырабатывать электроэнергию, во много раз более дешевую, нежели сейчас... Это позволит нам экономичнее обессоливать морскую воду, очищать сточные воды, выгодно использовать руды с низким содержанием полезных ископаемых... полностью использовать отходы производства, так что в нашей цивилизации исчезнет само понятие отбросы . Это позволит производить самые разнообразные новые синтетические материалы и вызовет много интересных изменений в использовании природных богатств [16, с. 71—72]. Сиборг предполагает далее, что избыток электроэнергии заставит перестроить всю промышленность, которая в огромных масштабах будет перерабатывать боксит и глину в алюминий, делать сталь методом водородного восстановления, производить магний и сплавы из недефицитного сырья. В большом хо-ду будут трансурановые элементы, которые станут новым видом ядерного топлива для самых различных установок — от реакторов летательных аппаратов до искусственных сердец, вживленных в тело человека . [c.233]


    Особую важность представлял синтез неизвестных ранее элементов технеция, франция, астата и др., а также всех трансурановых элементов (элементов, порядковый номер которых превышает 92). В настоящее время получено 15 трансурановых элементов (от 2 = 93 до 2=107 включительно), причем заслуга открытия наиболее тяжелых элементов ()02No, юзЬг, ю4Ки) принадлежит коллективу ученых социалистических стран, ведущему исследования в Объединенном институте ядерных исследований в Дубне.  [c.67]

    См. статью академика Г. Н. Флерова Сиитйз и поиск тяжелых трансурановых элементов . В сб. <<100 лет периодического за кона химических элементов . М., Наука , 1971. Здесь же говорится, что прОБвряются предварительные данные по синтезированному в 1968 г. элементу 105, см. также журнал Химия и жизнь , 1973, № 12. Сообщение о синтезе 107 элемента в газете Известия от 7 января 1977 г.  [c.67]

    В земной коре трансурановых элементов практически нет, если пренебречь ничтожными количествами 93-го и 94-го элементов. Искусственный синтез их стал возможен благодаря использованию метода ядерных реакций. В 1940 г. Макмилланом и Эйблсоном был синтезирован 93 элемент, названный ими нептунием. Использована следующая ядерная реакция  [c.286]

    Нынешняя (для середины 80-х годов) искусственная верхняя граница периодической системы — достигнутый предел синтеза — отвечает значению 2=108. Первые трансурановые элементы — Np, Pu, Am и m сейчас уже можно получить в больших количествах в результате облучения урана и плутония в промышленных энергетических реакторах. Даже америций и кюрий ныне выделяют килограммами. Транскюриевые элементы Вк, f и Fm в виде изотопов Вк, 253 д 2S7p извлекаются химическими [c.99]

    Успехи в синтезе трансурановых элементов и синтез трансактиноидов (Ки, 105—107) поставили впрямую вопрос о верхней границе периодической системы. Эта проблема привлекала внимание ученых в течение длительного времени. Еще Д. И. Менделеев, исправив массы тория и урана, поместил нх в IVB- й VIB-группы, и они оказались последними из известных в то время элементов периодиче- [c.450]

    Успехи в синтезе трансурановых. элементов и синтез трансактинидов (Ки, 105—107) поставили впрямую вопрос о верхней границе Периодической системы. Эта проблема прив.пекала внимание ученых в течение длительного времени. Еще Д.И. Менделеев, исправив атомные массы тория и урана, поместил их в IVB- и VIB-группы. Синтез нептуния и плутония позволил выделить в проблеме конца системы два аспекта о естественной границе и о возможном пределе синтеза искусственных элементов. Первый аспект в земных условиях решается просто последним элементом в их естественной последовательности является уран. Однако, учитывая возможность самопроизвольного синтеза Np и Ри при воздействии на природный уран нейтронов (за счет космических лучей, естественных процессов деления), можно полагать, что на. Земле последним природным элементом является плутоний. Если же рассматривать Периодический закон в космическом масштабе, то проблема естественного конца системы становится неоднозначной и [c.517]

    Ка, ТЬ, Ра, и), трансурановых элементов, водородоподобных атомов (мюоиия, позитрония), т. и. мезоатомов (см. Мезонная химия). Прикладная Р. включает технологию ядерного горючего, синтез меченых соедпнений и примеи. радионуклидов в качестве индикаторов (см. Меченые соединения) и источников излучения и энергии. Радиоактивность изучаемых Р. в-в позволяет использовать специфич. высокочувствительные методы измерения их количеств и заставляет применять особую технику для безопасной работы. [c.491]

    Совр. период Р. связан с испольэ. ядерных реакторов и мощных циклотронов для синтеза новых радиоакт. трансурановых элементов (№№ 95—107) и произ-ва радионуклидов. Широко изучаются физ.-хим. св ва радиоакт. элементов, разрабатывается технология ядерного горючего, переработки ядерного топлива после его использования. Метод радио-акт. индикаторов проникает во все области химии и смежных с ней наук. Исследуется состояние радионуклидов в ультраразбавл. системах. Р. продолжает развиваться в связи с бурным развитием атомной энергетики, для к-рой необходимы новые технол. схемы не[)сработки сырьевых источников и и ТЬ и отработанного топлива ведется поиск путей выделения и использ. радиоакт. отходов атомных электростанций, др. радионуклидов, решаются экологич. проблемы, связанные с радиоакт. загрязнениями. [c.491]


Библиография для Трансурановые элементы синтез: [c.209]    [c.408]   
Смотреть страницы где упоминается термин Трансурановые элементы синтез: [c.13]    [c.70]    [c.50]    [c.432]    [c.627]   
Основы общей химии Том 2 Издание 3 (1973) -- [ c.568 , c.573 ]




ПОИСК





Смотрите так же термины и статьи:

Элементы трансурановые



© 2025 chem21.info Реклама на сайте