Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фосфор валентность

    Фосфор Р (Is 2s 2/f 3s Зр ) по числу валентных электронов является аналогом азота. Однако как элемент 3-го периода он существенно отличается от азота — элемента 2-го периода. Это отличие состоит в том, что у фосфора больше размер атома, меньше энергия ионизации, большее сродство к электрону и большая поляризуемость атома, чем у азота. Максимальное координационное число фосфора шесть. Как и для других элементов 3-го периода, рл — рл-связывание для атома фосфора не характерно и поэтому в отличие от азота sp- и sp -гибридные состоянья орбиталей фосфора неустойчивы. Фосфор в соединениях проявляет степени окисления от —3 до +5. Наиболее характерна степень окисления +5. [c.365]


    Составим формулу соединения, которое состоит и. фосфора (валентность V) и кислорода (валентность II). [c.19]

    В каких соединениях фосфор имеет максимальную валентность  [c.553]

    Каковы валентные возможности фосфора Чем он в этом отношении отличается от своего аналога — азота  [c.133]

    Электронная структура атома фосфора соответствует формуле 1бР 5 25 2р Зз Зр . У фосфора валентные электроны находятся на третьем (внешнем) энергетическом уровне, на котором помимо 5- и трех р-орбиталей имеются пять свободных -орбиталей. [c.79]

    Согласно другой точке зрения различие свойств фосфора и азота объясняется наличием в атоме фосфора валентных З -орбиталей, [c.365]

    Объясните различие между первой энергией ионизации фосфора, Р (1063 кДж моль ) и серы, 8 (1000 кДж моль ), основываясь на сопоставлении валентных орбитальных электронных конфигураций атомов Р и 8. [c.401]

    Но у фосфора, как элемента 3-го периода, роль валентных играют также З -орбитали. Поэтому наряду с общностью свойств в химии этих типических элементов V группы проявляются существенные различия. Для фосфора возможны зрЧ -, зрЧ- и 5р -типы гибридизации валентных орбиталей. Максимальное координационное число фосфора равно 6. В отличие от азота для фосфора характерно л — рл-связывание за счет акцептирования свободными Зй(-орбиталями электронных пар соответствующих атомов [c.408]

    Устойчивое координационное число фосфора (V) 4, что отвечает sp -гибридизации его валентных орбиталей. Реже проявляются координационные числа 5 и 6, в этих случаях атому фосфора приписывают соответственно sp4- и вр й -гибридные состояния (стр. 415). [c.414]

    Аналогичное поведение обнаруживается и у элементов группы VA, но граница между металлами и неметаллами в этой группе проходит ниже. Азот и фосфор являются неметаллами, химия их ковалентных соединений и возможные состояния окисления определяются наличием пяти валентных электронов в конфигурации Азот и фосфор чаще всего имеют степени окисления — 3, -Ь 3 и +5. Мыщьяк As и сурьма Sb-семи-металлы, образующие амфотерные оксиды, и только висмут обладает металлическими свойствами. Для As и Sb наиболее важным является состояние окисления + 3. Для Bi оно единственно возможное, если не считать степеней окисления, проявляемых в некоторых чрезвычайно специфических условиях. Висмут не может терять все пять валентных электронов требуемая для этого энергия слишком велика. Однако он теряет три бр-электро-на, образуя ион Bi .  [c.455]

    Менделеев выполнял свою диссертационную работу в Германии, в Гейдельберге, как раз во время Международного химического конгресса в Карлсруэ. Он присутствовал на конгрессе и слышал речь Канниццаро, в которой тот четко изложил свою точку зрения на проблему атомного веса. Вернувшись в Россию, Менделеев приступил к изучению списка элементов и обратил внимание на периодичность изменения валентности у элементов, расположенных в порядке возрастания атомных весов валентность водорода 1, лития I, бериллия 2, бора 3, углерода 4, магния 2, азота 3, серы 2, фтора 1, натрия 1, алюминия 3, кремния 4, фосфора 3, к1 слорода 2, хлора I и т. д. [c.99]

    Фосфор по числу валентных электронов (35 3р ) является аналогом азота  [c.407]

    Атомы кислорода соединяются не менее чем с двумя различными атомами. Так же ведут себя кальций, сера, магний и барий. У этих элементов валентность два, У азота, фосфора, алюминия и золота валентность три. Железо может иметь валентность два или три. В принципе вопрос о валентности оказался не столь простым, каким представлялось вначале, но даже такой простейший вариант этой теории позволил сделать важные выводы. [c.81]

    При переходе от лития к фтору Г происходит закономерное ослабление металлических свойств и усиление неметаллических с одновременным увеличением валентности. Переход от фтора Г к следующему по значению атомной массы элементу натрию Ыа сопровождается скачкообразным изменением свойств и валентности, причем натрий во многом повторяет свойства лития, будучи типичным одновалентным металлом, хотя и более активным. Следующий за натрием магний во многом сходен с бериллием Ве (оба двухвалентны, проявляют металлические свойства, но химическая активность обоих выражена слабее, чем у пары Ы — Ыа). Алюминий А1, следующий за магнием, напоминает бор В (валентность равна 3). Как близкие родственники похожи друг на друга кремний 81 и углерод С, фосфор Р и азот Ы, сера 8 и кислород О, хлор С1 и фтор Г. При переходе к следующему за хлором в последовательности увеличения атомной массы элементу калию К опять происходит скачок в изменении валентности и химических свойств. Калий, подобно литию и натрию, открывает ряд элементов (третий по счету), представители которого показывают глубокую аналогию с элементами первых двух рядов. [c.20]


    Эффективность присадки зависит от валентного состояния и положения элементов в молекуле присадки, наличия функциональных групп, их синергизма и других факторов. Применение фосфор-, серу-, кислород- и азотсодержащих соединений в качестве присадок к смазочным маслам тесно связано с особенностью электронной структуры этих элементов. Взаимодействие их с металлической поверхностью деталей двигателя приводит к модифицированию последней (изменению структуры) и за счет образования защитных пленок обеспечиваются противокоррозионные, противоизносные и противозадирные свойства указанных соединений в растворе масел. Кроме того, присадки, содержащие эти элементы, стабилизируют масло, обрывая цепь окисления по реакции с пер-оксидными радикалами и разрушая гидропероксиды. [c.9]

    Галоидирование. Катализаторы, наиболее часто применяющиеся для хлорирования металлическое железо, окись меди, бром, сера, иод, галоиды железа, сурьмы, олова, мышьяка, фосфора, алюминия и меди растительный и животный уголь, активированный боксит и другие глины. Большинство этих катализаторов является носителями галоидов. Так, Fe, Sb и Р в галоидных соединениях способны существовать в двух валентных состояниях в присутствии свободного хлора они поочередно присоединяют и отдают хлор в активной форме. Аналогично иод, бром и сера образуют с хлором неустойчивые соединения. Катализаторы броми-рования подобны катализаторам хлорирования. Для иодирования наилучшим ускорителем служит фосфор. Для проведения процесса фторирования катализатор не требуется. В присутствии кислорода галоидирование замедляется. [c.329]

    Каталитическое хлорирование основано на применении переносчика хлора, такого как йод [2], сера [3], фосфор, сурьма и другие, в виде соответствующих хлоридов, которые растворяются в хлорируемом углеводороде или прн хлорировании газообразных парафиновых углеводородов — в растворителе. Применяются исключительно элементы, имеющие по крайней мере два значения валентности. В качестве гомогенных катализаторов могут также применяться вещества, образующие радикалы, как, например, диазо-метап, тетраэтилсвинец и гексафенилэтан [4]. Они обладают способностью разделять молекулу хлора на атомы, которые тотчас ке вызывают возникновение цепной реакции. [c.113]

    Когда элемент образует несколько рядов соединений, соответствующих различным степеням окисления, после названия соединения в скобках дается указание либо на валентность катиона (римской цифрой), либо на число атомов галогена, кислорода, серы или кислотного остатка в молекуле соединения (прописью). Например, железо хлористое (П1), фосфор хлористый трех), марганца окись (дву). При этом обозначение валентности дается обычно для менее характерных валентных состояний. Например, для меди в случае двухвалентного состояния указание на валентность опускается, одновалентная же медь обозначается так медь иодистая (I). [c.9]

    Проводимость таких веществ, как кремний и германий, можно повысить, вводя в них небольшое количество определенных примесей. Например, введение в кристаллы кремния примесей бора или фосфора приводит к эффективному сужению межзонной щели. Небольшие количества бора или фосфора (несколько миллионных долей) удается включить в структуру кремния при выращивании кристалла. Атом фосфора имеет пять валентных электронов, и поэтому, после того как четыре из них используют- [c.631]

    Фосфор, мышьяк, сурьма и висмут образуют стехиометрические соединения, отвечающие формальной валентности, только с s-элементами и d-элементами подгруппы цинка. [c.342]

    То, что краситель и адсорбент составляют единую квантовую систему, видно из многих фактов. Самый наглядный из них состоит в том, что поглощение радиации любой, например самой малой, частоты в пределах полосы поглощения данного фосфора вызывает испускание всего его спектра излучения, в том числе и значительно больших частот, чем частот поглощенного света. Значит, кванты излучения поступают в общее пользование, причем энергия, недостаточная для излучения частот, которые превышают малую частоту поглощенного света, также поступает за счет общих ресурсов твердого тела. Не допускает иных толкований также тот факт, что хотя краситель, несомненно, находится только на поверхности, поглощение света характерных для него длинных волн (для которых кристалл, адсорбирующий данный краситель, практически прозрачен) сопровождается образованием металлического серебра в объеме кристалла бромида серебра. При этом чувствительность бромида серебра тем дальше сдвигается в сторону длинных волн, чем длиннее цепь сопряженных связей в структуре молекулы красителя (рис. 44). Дело в том, что электроны красителя находятся в волновом движении и что молекула красителя, соединяясь с кристаллом валентной связью, составляет с ним единое целое. Кристалл и краситель образуют единую квантовую систему. Не удивительно поэтому, что механизм фотолиза чистых [c.130]

    Фосфор, Р, имеет валентную конфигурацию Зх Зр , а сера, 8, обладает валентной конфигурацией Зх Зр . У атома Р, таким образом, имеется полузаполненная Зр-оболочка, тогда как у атома 8 дополнительный электрон вынужден спариваться с одним из уже имеющихся на Зр-орбиталях электроном [c.401]

    СЯ для образования ковалентных связей в кристаллической структуре кремния, у фосфора остается еще один электрон. При наложении на кристалл электрического поля этот электрон может смещаться в сторону от атома фосфора поэтому говорят, что фосфор является донором электронов в кристалле кремния. Для высвобождения донируемых электронов требуется лищь 1,05 кДж моль эта энергия превращает кристалл кремния с небольшой примесью фосфора в проводник. При введении в кристалл кремния примеси бора возникает противоположное явление. Атому бора недостает одного электрона для построения необходимого числа ковалентных связей в кристалле кремния. Поэтому на каждый атом бора в кристалле кремния приходится одна вакансия на связывающей орбитали. На эти вакантные орбитали, связанные с атомами бора, могут быть возбуждены валентные электроны кремния, что дает возможность электронам свободно перемещаться по кристаллу. Подобная проводимость осуществляется в результате того, что на вакантную орбиталь атома бора перескакивает электрон соседнего атома кремния. Вновь образовавшаяся вакансия на орбитали атома кремния тут же заполняется электроном со следующего за ним другого атома кремния. Возникает каскадный эффект, при котором электроны перескакивают от одного атома к следующему. Физики предпочитают описывать это явление как движение положительно заряженной дырки в противоположном направлении. Но независимо от того, как описывается это явление, твердо установлено, что для активации проводимости такого вещества, как кремний, требуется меньше энергии, если в кристалле содержится небольшое количество донора электронов типа фосфора либо акцептора электронов типа бора. [c.632]

    Белый фосфор состоит из тетраэдрических молекул Р4, схематически изображенных на рис. 21.25. Как было отмечено в разд. 8.7, ч. 1, валентные углы по 60", как в молекуле Р4, довольно редко встречаются в других молекулах. Они свидетельствуют о наличии очень напряженных связей, что согласуется с высокой реакционной способ- [c.321]


    Хотя фосфор является электронным аналогом азота, но наличие в валентном мектронном слое атома свободных /-орбиталей делает соединения фосфора не похожими на соединения азота. [c.414]

    Электронная структура фосфорорганических соединений и природа химических связей энергии и длины связей фосфора валентные углы образование связей с участием Зй-орб италей . [c.63]

    В еще большей мере ароматические свойства присущи фосфо-риновому кольцу. 2,4,6-Трифенилфосфорнн не аутоокисляется и не кватернизуется при действии иодистого метила или борофторида триэтилоксония . В то же время взаимодействие его с нуклеофильными реагентами — алкил- или ариллитиевыми соединениями, легко протекает в бензоле уже при комнатной температуре" . При этом атака происходит по фосфору, валентная оболочка которого расширяется до децета, и возникает стабилизованный резонансом фосфо-рин-анион (1). Образование аниона (I) доказано при помощи ПМР и УФ-спектров. Гидролиз реакционной смеси, имеющей глубокую сине-фиолетовую окраску, приводит к 1-алкил(арил)-2,4,6-три- [c.628]

    Приготовление силикатных фосфоров. Химический состав фосфоров, структура фосфоров, валентность Мп. Существует значительное число различных методик приготовления кристаллофосфоров на силикатной основе. В качестве примера мы приведём одну из них [270]. Хорошо очищенный аммиачный раствор окиси цинка, водный раствор азотнокислого марганца н спиртовой раствор кремниевой кислоты (этилсиликат) сливают вместе при этом образуется гель. Гель высушивается, растирается и прокаливается до 1200° С в кварцевых сосудах и после прокаливания быстро охлаждается. При малом содержании Мп прокаливание монгно вести в воздухе при больпюм содержании Мп, во избежание его окисления, прокаливание ведётся в атмосфере углекислоты. [c.411]

    Каталитическое окисление нефтяных остатков. Имеется множество попыток ускорить процесс окисления сырья, повысить качество или придать определенные свойства окисленному битуму с помощью различных катализаторов и инициаторов. В качестве катализаторов окислительногвосстановительных реакций предложено применять соли соляной кислоты и металлов переменной валентности (железа, меди, олова, титана и др.). В качестве катализаторов дегидратации, алкилирования и крекинга (перенос протонов) предложены хлориды алюминия, железа, олова, пятиокись фосфора в качестве инициаторов окисления — перекиси. Большинство из этих катализаторов инициирует реакции уплотнения молекул сырья (масел и смол) в асфальтены, не обогащая битумы кислородом. Возможности ускорения процесса окисления сырья и улучшения свойств битума (в основном в направлении повышения пенетрации при данной температуре размягчения), приводимые в многочисленной патентной литературе, обобщены в [63], но, поскольку авторы патентов делают свои предложения, не раскрывая химизма процесса, их выводы в настоящей монографии не рассматриваются. Исследования А. Хойберга [64, 65] [c.141]

    В большинстве случаев галоидирование ускоряется под действием светового облучения (длина волны 3000—5000 А) или высокой температуры (в присутствии катализатора или без него). В качестве катализаторов обычно применяют галоидные соединения металлов, имеющих два валентных состояния, способные отдавать атомы галоидов при переходе из одного валентного состояния в другое, — P I5, P I3, Fe lg. Используют также хлористую сурьму или хлористый марганец, а также неметаллические катализаторы — иод, бром или фосфор. [c.259]

    Литий и натрий имеют умеренное сродство к электрону сродство к электрону бериллия отрицательно, а у магния оно близко к нулю. В атомах Ве и М валентная х-орбиталь полностью заполнена и присоединяемый электрон должен заселять расположенную выше по энергии р-орбиталь. Азот и фосфор имеют небольшое сродство к электрону, потому что присоединяемый электрон должен спариваться в этих атомах с одним из электронов на полузаполненнь х р-орбиталях. [c.400]

    Атомы элементов третьего и следующих периодов часто не подчиняются правилу октета. Некоторые из них обнаруживают поразительную способность связываться с большим числом атомов (т. е. окружаться больщим числом электронных пар), чем предсказывает правило октета. Например, фосфор и сера образуют соединения PF5 и SF соответственно. В льюисовых структурах этих соединений все валентные электроны тяжелого элемента используются им для образования связей с другими атомами  [c.475]

    В этих схемах полной стрелкой показано положение координационной связи. Фигурирующие здесь донорные элементы (сера, -мышьяк и азот), а также селен, фосфор и другие не образуют соединений, обладающих свойства.ми каталитических ядов, если они находятся в состоянии наивысшей валентности, поскольку в этом случае молекулы не обладают парами свободных электронов. То же справедливо для ионов этих элементов. Например, сульфит-ион является ядом, в то время как сульфат-ион им не является [c.50]

    Числом электронов наружной оболочки определяются валентные состояния, свойственные данному элементу, а следовательно, типы его соединений — гидридов, окислов, гидроокисей, солей и т. д. Так, в наружных оболочках атомов фосфора, мышьяка, сурьмы и висмута находится одинаковое число (пять) электронов. Этим определяется одинаковость их основных валентных состояний (—3, -fЗ, -Ь5), однотипность гидридов ЭНз, окислов Э2О3 и ЭаОб, гидроокисей и т. д. Данное обстоятельство в конечном счете и является причиной того, что указанные элементы располагаются в одной подгруппе периодической системы. [c.42]

    Таким образом, число непарных электронов в атомах бериллия, бора и углерода, находящихся в возбужденном состоянии, соответствует фактической валентности этих элементов. Что же касается атомов азота, кислорода и фтора, то возбуждение их не может привести к увеличению чис.г а неиарных электронов во втором уровне их электронных оболочек. Однако у аналогов этих элементов — фосфора, серы и хлора,— поскольку на третьем уровне их [c.45]

    Число непарных электронов в атоме фосфора прн возбуждении достигает пяти, что соответствует его фактической максимальной палентности. При возбуждении атома серы число непарных электронов увеличивается до четырех и даже до [иести, а у атома хлора— до трех, пяти и, максимально, до семи, что также соответствует фактическим значениям проявляемой ими валентности. Подобным же образом ведут себя при возбул<дении атомы аналогов фосфора, серы и хлора, максимальная валентность которых достигает, соответственно, пяти, шести и семи. [c.46]

    Пентахлорид фосфора в твердом состоянии имеет одну модификацию с ионной решеткой, состоящей из ионов РС и РС1 . Напишите льюисовы (валентные) структуры этих ионов и предскажите их геометрическое строение. Какая гибридизация орбиталей используется атомом фосфора в каждом из этих ионов для образования связей с атомами хлора Почему РС15 в твердом состоянии существует в виде ионного соединения, тогда как в газовой фазе его устойчивой формой являются нейтральные мо.пекулы  [c.334]


Смотреть страницы где упоминается термин Фосфор валентность: [c.102]    [c.320]    [c.149]    [c.310]    [c.344]    [c.195]    [c.195]    [c.195]    [c.421]    [c.39]    [c.27]   
Основы общей химии Том 2 Издание 3 (1973) -- [ c.231 , c.443 ]




ПОИСК







© 2025 chem21.info Реклама на сайте