Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

поляризация в природе

    Палладий выбран в связи с тем, что металлы платиновой группы отличаются особенно высокой электродной поляризацией, природа которой до настоящего времени весьма мало изучена. Кроме того, палладий, в отличие от других металлов этой группы, в водных растворах образует устойчивые ионы одной валентности — обычно двухвалентные. В растворах его солей легко выделить области потенциалов, при которых происходит только электро-осаждение металла. Подбирая соответствующие комплексные соли палладия, можно выделять металл из растворов в особенно широком интервале pH, что позволяет проследить роль кислотности растворов в процессе совместного выделения металла и водорода. [c.31]


    Отраженный луч оказывается более или менее поляризованным. При этом степень поляризации определяется величиной угла падения луча, а характер поляризации—природой и строением слоя границы раздела. [c.93]

    Долю общей поляризации, не связанную с замедленностью процессов транспортировки, часто называют перенапряжением металла. Перенапряжение и здесь тесно связано с природой электродного процесса. [c.453]

    При электролизе растворов простых солей характер катодных осадков и величина электродной поляризации определяются в первую очередь природой выделяющегося металла (табл. 22.1). [c.459]

    Скорость коррозии с кислород-ной деполяризацией поэтому поч-ти не зависит (в известных пре-делах) от природы растворяющегося металла, в частности от величин его равновесного потенциала и анодной поляризации. В этом легко убедиться, если построить коррозионные диаграммы для трех различных металлов М, М.1 и Мз (см. штрих-пунктирные линии на рис. 24.7). На коррозию с кислородной деполяризацией может накладываться коррозия за [c.501]

    В процессе адсорбции на металле заряженных или склонных к поляризации молекул моюще-диспергирующих присадок образуется двойной электрический слой, обладающий экранирующим действием и препятствующий образованию отложений. Алкилсалицилаты кальция образуют наименьшие мицеллы, несущие наибольший электрический заряд [227]. Такие мицеллы обладают наиболее высоким собственно моющим действием за счет создания на поверхности металла двойного электрического слоя из жестких диполей. Сульфонатные присадки обладают несколько меньшей полярностью, но большей поляризуемостью и гибкостью. Они мало чувствительны к природе катиона и значительно легче (по сравнению с алкилсалицилатными присадками) перестраивают свои мицеллы. Собственно моющее действие сульфонатных присадок ниже, чем у алкилсалицилатных. Сукцинимиды, отличаясь высокой поверхностной активностью, не обладают собственно моющим действием, поскольку не способны образовывать двойной электрический слой на поверхности металла. [c.214]

    Помимо количества адсорбированного вещества среди параметров адсорбции, имеющих важное значение для оценки эффективности противоизносного действия присадок, является поверхностный дипольный момент адсорбированных молекул присадки в граничном слое, зависящий от склонности молекул адсорбата к поляризации под действием силового поля металла. Дипольный момент с ростом заполнения поверхности присадкой может заметно уменьшаться вследствие взаимной деполяризации молекул. Вместе с тем при низких заполнениях величина дипольного момента характеризует природу поверхност- [c.255]

    Рассмотрим более подробно явление концентрационной поляризации на капельном ртутном катоде при разряде ионов металла, например кадмия. В отличие от рассмотренного случая восстановления ионов серебра на серебряном электроде, где природа металла в процессе электролиза не меняется, при разряде ионов кадмия на ртутном катоде происходит образование амальгамы кадмия. Потенциал амальгамного электрода [c.644]

    В данной работе необходимо исследовать природу поляризации температурно-кинетическим методом. [c.416]

    Расчет энергии активации произвести для пяти-шести значений потенциала поляризации и на основании полученных данных сделать вывод о природе медленной стадии электрохимического процесса. [c.418]

    Нелокальная поляризуемость электролита оказывает существенное влияние на структуру ДЭС, образующегося вблизи фосфолипидной поверхности. Однако необходимо отметить, что в общем случае экранирование поверхностных источников электрических полей имеет два принципиально разных по физической природе механизма [443]. Первый механизм связан с экранированием поверхностных источников ионами электролита, второй обусловлен реакцией самого растворителя на поверхностные источники. По существу, оба эти механизма имеют нелокальный характер и определяются корреляциями флуктуаций электрических полей в соседних точках пространства. В первом случае такие флуктуации обусловлены флуктуациями концентрации ионов, характерный радиус корреляций которых есть дебаевский радиус X . Во втором случае флуктуации электрических полей связаны с флуктуациями поляризации в электролите, радиус корреляции которых а . [c.158]


    Влияние температуры на электрохимические процессы успешно используется С. В. Горбачевым и его школой как кинетический метод исследования природы поляризации этих процессов. Зная эффективную энергию активации процесса, можно судить о природе стадии, определяющей скорость электрохимического процесса. [c.355]

    Разрыв связи может произойти либо с разрывом электронной пары, т. е. с образованием двух неспаренных электронов (гомолиз), либо с ее переходом к одному из атомов, который приобретает отрицательный заряд (гетеролиз). Естественно, что второй партнер приобретает положительный заряд. Направление разрыва зависит от строения вещества, т. е. от степени поляризации разрываемой связи, а также, что существенно для рассматриваемого вопроса, от природы катализатора. [c.113]

    Подобные же представления используются и для объяснения природы кратных связей между атомами других элементов и, в частности, между разными атомами, например в карбонильной группе, >С=0. Однако прн этом электроны я-связи, как более легко поляризуемые, способны в той или другой степени смещаться к одному из атомов, что приводит к поляризации связи. [c.66]

    Возникновение поляризации обусловлено замедлением в ходе электродного процесса. Поскольку скорость процесса, состоящего из нескольких последовательных стадий, определяется скоростью наиболее медленной (лимитирующей) стадии, то появление поляризации связано непосредственно с этой стадией. Если известна природа лимитирующей стадии, вместо термина поляризация употребляется, как правило, термин перенапряжение . Если наиболее медленной стадией является транспорт реагирующих веществ к электроду или продуктов, образовавшихся в результате электрохимической реакции от него, перенапряжение называется диффузионным (т]д). Когда наиболее медленно протекает стадия разряда или ионизации, возникает электрохимическое перенапряжение, называемое также перенапряжением (электронного) перехода (tin). Торможение в дополнительных стадиях сопровождается возникновением собственно фазового перенапряжения (т1ф) и перенапряжения реакции (г р). Каждый вид перенапряжения обусловлен специфическим механизмом его появления и описывается собственными кинетическими уравнениями. В общем случае электродная поляризация складывается из всех видов перенапряжения  [c.499]

    Выяснение природы перенапряжения при электрохимических процессах представляет определенный теоретический и практический интерес. Электродная поляризация в общем случае складывается из четырех составляющих 1д- Лп. т)р. Лф. Для оценки природы поляризации необходимо найти вклад, который вносит в ее общую величину каждая составляющая. Поскольку в настоящее время отсутствуют необходимые для этого данные, используется упрощенный подход к решению этого вопроса. Во-первых, определяется лимитирующая стадия. Вид перенапряжения, ей свойственный, относится к электродному процессу в целом. Во-вторых, величина поляризации разделяется только на две части концентрационную, к которой относится перенапряжение диффузии, и активационную, объединяющую все остальные виды перенапряжения. Для определения при- [c.510]

    Из уравнения (186.1) видно, что между 1пг,, и 1/Г существует линейная зависимость и что по тангенсу угла наклона прямой можно рассчитать энергию активации. По величине энергии активации т) и зависимости ее от перенапряжения можно сделать вывод о природе электродной поляризации. Если энергия активации практически не зависит от перенапряжения (рис. 179, прямые а) н совпадает с величиной, специфической для процессов диффузии в водных растворах (10—12 кДж/моль), то электродная реакция сопровождается диффузионным перенапряжением. Более высокое значение энергии активации Е (40  [c.510]

    Природу межмолекулярных сил удалось раскрыть на основе учения о строении вещества. Открытие дипольных свойств и изучение поляризации молекул, выяснение причин возникновения молекулярных спектров, исследование гидратации ионов и т. п. подтверждают, что межмолекулярные силы имеют электрическую природу и способны проявляться в различных формах. Различают межмолекулярные силы ориентационные, индукционные и дисперсионные. [c.75]

    Для практических целей желательна возможно большая длительность сохранения зарядов. Первые исследования зависимости Оэфф от времени показали, что Оэфф постепенно спадает, причем характер спада о фф различен и зависит от режимов поляризации, природы и структуры полимера. Для термоэлектретов характерным является перезаряжение — изменение знака заряда от времени хранения. В не слишком высоких поляризующих полях, Еп< <10 кВ/см, вначале образуется гетерозаряженный электрет, который со временем хранения меняет знак и становится гомозаряжен-ным. Такое поведение характерно для всех полярных полимеров. В частности, для восков (карнаубского, пчелиного), канифоли, ПЭТФ, ПММА, ПВХ, ПК [1, 72]. [c.59]

    Уравнения (14.4) и (14.5) согласуются с наблюдениями. Рациональная организация эл( ктрохимического процесса, при которой химический источник тока отдает максимум электрической э 1ергии, а электролитическая ванна потребляет ее минимальное количество, возможна в том случае, если известна причина возникновения э.д.с. поляризации и выяснена ее природа. Так как э.д.с. поляризации является результативной величиной, слагающейся из изменений электродных потетшалов, то прежде всего необходимо изучить зависимость электрг)дных потенциалов от силы тока. Эту задачу решает кинетика электродных процессов. [c.288]

    Как уже указывалось ранее, стадия, определяющая скорость всего электродного процесса, называется замедленной или лимитирующей бтайией. Замедленность той или иной стадии является непосредственной причиной -поляризации электрода. Если известна природа замедленной стадии, т. е. ясна причина, обусловливающая появление -поляризации, то вместо термина поляризация предпочтительнее употреблять термины электродное перенапряжение или просто перенапряжение. [c.296]

    В результате электрохимического акта образуется адсорбированный катодом атомарный водород. При заданной плотности тока доля поверхности электрода, занятая атомами водорода, составляет некоторую величину 0 н. Если поляризация электрода обусловлена только замедленностью электрохимической стадии, то все остальные стадии, в том числе и удаление адсорбированного водорода, совершаются с несравненно большими скоростями, чем перенос заряда, и, следовательно, заполнение при данном токе должно быть равно (или почти равно) заполнению 0н в отсутствие результативного тока, т. е. при равновесном потенциале водородного электрода 0 н = 0н- Степень заполнения поверхности электрода адсорбированным атомарным водородом в условиях его катодного выделения определяется в первую очередь природой металла и для данного металла зависит от потенциала электрода. Она ничтожно мала (0 = 0) на Нд, РЬ, Сс1 и на других мягких или ртутеподобиых металлах. В согласии с этим выделение водорода по реакциям (17.78) и (17.79) может происходить несколькими путями и, соответственно, описываться различными кинетическими уравнениями. [c.361]

    Характер осадка и условия его формирования во времени ири постоянной силе тока (или ири заданном потенциале) зависят не только от природы металла, но и от состава раствора и присутствующих в нем примесей. Примеси поверхностно-активных веществ, а также различных окислителей (например, растворенного кислорода) влияют на кинетику электровыделения металлов. В зависи-мостн от степени чистоты раствора и 1 рнроды примесей могут меняться характер роста кристаллов, число центров кристаллизации, возникаюнщх за единицу времени на единице поверхности катода, значение поляризации ири данно] г илотности тока, характер ее [c.455]


    Систематические исследования влияния состава раствора на кинетику электроосаждеиия металлов (Зылп начаты в 1917 г. Н. А. Изгарышевым. Было установлено, что при катодном выделении металлов из растворов их простых солей существенное значение имеет природа аниона соли. Влияние природы аниона на перенапряжение и на характер образующихся осадков наблюдается для многих металлов, но наиболее сильно оно проявляется для металлов, выделение которых не сопровождается высокой поляризацией. Обычно перенапряжение уменьшается при переходе от одного аниона к другому в следующем порядке  [c.461]

    Преобладание того илп иного зпда перенапряжения определяется природой металла, составом оаствора, плотностью тока, температурой электролита. При обычных температурах и при использовании простых, иекомплексных электролитов перенапряжение изменяется с природой металлов, как это показано в табл. 22.1. Опытные данные указывают на то, что выделение металлов, стоящих в начале ряда (Hg, Ag, Т1, РЬ, Сс1, 5п), сопровождается лишь незначительной поляризацией, связанной главным образом с замедленностью возникновения и р.азвития повой фазы. Замедленность электрохимической стадии не играет здесь существенной роли, В электрохимической литературе эти металлы, для которых характерно фазовое перенапряжение, называются часто нормальными металлами. Напротив, при выделении металлов, стоящих в конце ряда табл. 22.1 (металлы группы железа), наблюдается высокая поляризация, обусловленная преимущественно замедленностью электрохимической стадии. Эти металлы, для которых характерно электрохимическое перенапряжение, называются инертными металлами. Промежуточное положение и по величине поляризации, и по природе перенапряжения (здесь наиболее вероятно [c.464]

    Индукционное взаимодействие. Установлено, что раствори — тели, обладающие значительным дипольным моментом, способны индуцировать дипольный момент у молекул асимметричной и сла— боасимметричной структуры. Следовательно, индуцированию подвержены как полярные, так и некоторые неполярные углеводороды масляного сырья. Поляризации подвержены в большей степени полициклические ароматические углеводороды, у которых ароматические кольца слабо экранированы нафтеновыми циклами и короткими алкильными цепями (то есть голоядерные). Под влиянием элв стростатического поля растворителя в таких молекулах масляной фракции возникает дeфopмai ия внешнего электронного слоя, что приводит к неравномерному распределению зарядов на отдельных участках молекул. В результате неполярная молекула временно превращается в индуцированный диполь. Молекулы с индуцированным дипольным моментом подвергаются далее ориентационному взаимодействию и переходят и раствор полярного растворителя. Индукционные силы взаимодействия зависят от силы электростатического поля полярной молекулы, то есть от значения дипольного момента и химической природы неполярных молекул, а именно от способности их поляризоваться. Индуцированный дипольный момент пропорционален напряженности поля Е, то есть =аЕ, где а характеризует степень поляризуемости индуцированной молеку — лы. [c.215]

    Во всех расчетах не принимаются во внимание довольно значительные силы взаимодействия, возникающие из-за аффекта поляризации. Так, если нейтральную молекулу, не имеющую ио своей природе постоянного диполя,, поместить в электростатическое поле, у нее появляется наведенный дшюль Для изотропной молекулы с поляризуемостью а в однородном электрическом поле наведенный диполь будет противоположен по направлению Е и равен по величине — иЕ. Работа, которую необходимо затратить для [c.446]

    Скорость электрохимического процесса в обратимой окислительпо-восстановительной системе зависит от соотношения концентраций окисленной и восста ювленной форм ионов. Если наиболее замедленная стадия процесса электролиза имеет диффузионную природу (концентрационная поляризация), то зависимость скорости (силы или плотности тока) электролиза от состава исследуемой обратимой системы рассчитывается по уравнению [c.418]

    Относительно природы веществ, являющихся носителями оптической активности, высказывались различные предположения. Ракузин и Маркуссон считали, что носителями оптической активности нефти являются нафтеновые кислоты. Однако опыт с русским цилиндровым маслом, которое обрабатывалось едким кали для удаления нафтеновых кислот, показал, что если угол вращения плоскости поляризации до обработки составлял 11,2°, то после обработки он стал 10,4°, т. е. произошло уменьшение только на 0,8°. Как видно, причина вовсе не в нафтеновых кислотах. Предполагали, что активными нефтями являются те из них, которые содержат серу. Однако опыты с удалением серы из нефти не оправдали предположения Альбрехта, что носителями оптической активности могут быть углеводороды, кипящие в узких пределах. [c.54]

    Электрокинетические явления, происходящие в неводных дисперсных системах, в частности влияние постоянного однородного электрического поля на суспензии твердых углеводородов нефти в органических растворителях, описано в работах [104, 114]. В качестве дисперсионной среды были взяты органические растворители разной природы, многие из которых широко применяются в процессах производства масел, парафинов и церезинов (н-гексан, н-гептан, изооктан, бензол, толуол, метилэтилкетон, ацетон и др.). Поведение суспензий в электрическом поле исследовали при 20 °С в стеклянной ячейке с плоскими параллельными никелевыми электродами в интервале напряженностей до 12,5 кВ/см. Установлено, что в алифатических растворителях происходит перемещение частиц дисперсной фазы (твердых углеводородов) в сторону катода, в то время как в ароматических растворителях эти же частицы перемещаются к аноду. Для твердых углеводородов, очищенных от ароматических компонентов и смол, в дисперсных системах с той же дисперсионной средой наблюдается явление двойного электрофореза, т. е. частицы дисперсной фазы перемещаются в сторону как положительного, так и отрицательного электрода. В суспензиях твердых углеводородов, где дисперсионной средой являются полярные растворители (МЭК, ацетон), явление электрофореза выражено слабо. Для таких систем характерна можэлектродная циркуляция, сопровождаемая агрегацией частиц. Эти электрокинетические явления в суспензиях твердых углеводородов объясняются существованием двойного электрического слоя на границе раздела фаз. Двойной электрофорез и меж-электродная циркуляция объясняются [115] поляризацией частиц твердой фазы и свойственны частицам, не имеющим заряда или находящимся в изоэлектрическом состоянии с мозаичным распределением участков с различным знаком заряда. Таким образом, у частиц дисперсной фазы как в полярной, так и в неполярной среде, отсутствует электрический заряд, а если он и есть, то весьма неустойчив. [c.187]

    В. Поглощательные и излучательные характеристики. Поглощательная способность системы поверхностей (значение ее заключено между О и 1) определяет долю падаю-нгего излучения, поглощенную системой поверхностей. Степень черноты (излучательная способность — значение ее тоже заключено между О и 1) определяет, какая доля излучения черного тела в действительности излучается системой поверхностей. Чем определяются эти величины Очевидно, они зависят от используемой системы поверхностей. материала, из которого она изготовлена, его структуры, определяемой обработкой, толщиной окисных пленок, неровностями и т. д. Если структура поверхности стабильна (это не всегда имеет место), то радиационные характеристики рассматривают как функции термодинамического состояния, определяемого температурой Т.,. Более того, характеристики зависят от природы теплового и.злучения направления и длины волны, а иногда и поляризации. [c.454]

    С учетом природы абсолютно чврнвго излучения множитель при os 0dQ принимается постоянным, однако лучи вдоль исследуемых направлений могут иметь дополнительный массовый множитель е,-(0, ф)/е,-. Ири учете поляризации в дополнение к мнажителю (Е,7Л/)(е(0, Ф,)/е,-) луч должен рассматриваться как четырехкомпонентный вектор [32]. [c.479]

    Поляризация ионных слоев, наступающая вследствие деформащ1и ионных сфер, вызывает появление дальнодействуюацтх сил притяжения дипольной природы. [c.7]

    В теории поляризации специфические свойства поверхности не рассматриваются, в то время как в большинстве случаев на границе раздела фаз образуется поверхностный слой со свойствами, отличающимися от объемных. Например, диспергированные в неполярной среде капельки или частицы обладают электрическим зарядом, который возникает благодаря различным физико-химическим процессам. Анализ явлений в области сильной поляризации затруднен тем, что в диэлектрических системах одновременно может происходить несколько процессов, имеющих различную природу (электрофорез, дизлектрофорез и др.). В связи с этим оценку роли каждого фактора проводят, как правило, на модельных системах. [c.21]

    При отсутствии природных ПАВ (ТУ-2) в неполярных средах наблюдалось одновременное невихреобразное перемещение частиц как к катоду, так и к аноду. Такое явление было названо двойным электрофорезом (его не следует путать с диэлектрофорезом, т. е. движением поляризованных незаряженных частиц в неоднородном поле). Для частиц полярной среды этой же природы характерна межэлектродная циркуляция, сопровождаемая агрегацией. Двойной электрофорез и межэлектродная циркуляция связаны с поляризацией материала твердой фазы и свойственны нейтральным частицам или частицам, находящимся в иэоэлектрическом состоянии с мозаичным распределением участков с различными знаками заряда [11]. По-видимому, природа материала дисперсной фазы (различная длина и разветвленность углеводородной цепи) в данном случае не влияют на поведение дисперсий в электрическом поле. [c.29]

    Пфейффер [4] наиболее близко подошел к рассмотрению зависимости физико-механических свойств битумов как коллоидных систем от количественного соотношения основных компонентов (асфальтенов, смол, углеводородов) и их химических особенностей. Он сделал, попытку выяснить влияние каждого нз этих компонентов коллоидной системы на ее реологические свойства. Он указал на важное значение атомарногсГсоотношення С Н как ноказателя степени ароматичности отдельных компонентов. Подчеркивая ароматическую природу асфальтенов и, как следствие этого, большую или меньшую склонность их к поляризации, Пфейффер делает заключение о возможности управления процессами гелеобразования таких коллоидных систем, исиоль-ь я сьлиыность асфальгеноБ к поляризации. Присутствующие в молекулах асфальтенов кислород-, серу- и азотсодержащие поляр- [c.495]


Смотреть страницы где упоминается термин поляризация в природе: [c.353]    [c.346]    [c.87]    [c.57]    [c.291]    [c.431]    [c.481]    [c.277]    [c.355]    [c.402]    [c.403]    [c.420]    [c.306]    [c.67]    [c.140]   
Основы общей химии Том 2 Издание 3 (1973) -- [ c.146 , c.238 , c.241 , c.567 ]




ПОИСК







© 2025 chem21.info Реклама на сайте