Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химические от давления

    В 1899 г. труды Гиббса были переведены на французский язык Анри Луи Ле Шателье (1850—1936). Физико-химик Ле Шателье в настоящее время наиболее известен как автор правила (1888 г.), получившего название принципа Ле Шателье. Согласно этому правилу, любое изменение одного из условий равновесия вызывает смещение системы в таком направлении, которое уменьшает первоначальное изменение. Другими словами, если система, находящаяся в состоянии равновесия, подвергается воздействию повышенного давления, то она перестраивается таким образом, чтобы занимаемое ею пространство было как можно меньше, так как давление при этом понизится. Подъем температуры вызывает такие изменения, которые сопровождаются поглощением тепла и, таким образом, понижением температуры и т, д. Как оказалось, химическая термодинамика Гиббса четко объясняла принцип Ле Шателье, [c.116]


    Работа этим способом проводится с неподвижным железным катализатором п с отводом тепла реакции через вмонтированный внутрь печи охладитель. Поддержание необходимой температуры регулируется давлением пара в охлаждающем агрегате. Выход продукта составляет 185 г на 1 смеси СО/Нг, включая фракцию Сз. Это соответствует выходу около 90% от теоретического. Здесь также содержание олефинов исключительно высокое и (что особенно важно при использовании их в химическом направлении) олефины очень равномерно распределены но всем фракциям. Их содержится около 75% во фракции Сд и 62% во фракции С . В среднем у 70% олефинов двойная связь находится у конца молекулы. Степень разветвленности углеводородной смеси, кипящей в интервале кипения среднего масла, составляет около 25%. [c.32]

    При дальнейшем понижении давления до 0,1 ат выделяющийся газ уже примерно на 96% состоит из этилена. Он промывается сначала разведенным раствором кислоты для удаления небольших количеств аммиака, а затем щелочью, носле чего вполне пригоден для дальнейшей химической переработки. [c.74]

    Совершенно естественно, что в качестве сырья для химической переработки и синтеза в первую очередь были использованы газообразные представители алифатических углеводородов, которые, разумеется, отличаются большой однородностью состава. Кроме того, вследствие относительно большой разности температур кипения они легче поддаются разделению на индивидуальные компоненты методом перегонки под давлением. Понятно также, что из этой группы газообразных алифатических углеводородов в первую очередь внимание исследователей привлекли компоненты, обладающие наибольшей реакционной способностью, т. е. олефины. [c.8]

    Весьма важное значение имеют жидкие компоненты природного газа, большие количества которых получаются из так называемых жирных газов в виде сжиженных газов и газового бензина. Сжиженные газы (пропан и бутан) и газовый бензин (пентан, гексан и гептан) после физической стабилизации являются важным сырьем для химической промышленности. Под термином сжиженные газы подразумевают смеси пропана и бутана, пропилена и бутиленов. Эта смесь углеводородов сжижается при нормальной температуре под давлением до 20 ат. [c.20]

    Согласно опубликованным данным [51] парафин, пригодный для химического синтеза, например для окисления или производства смазочных масел, должен удовлетворять определенным, требованиям. При остаточном давлении 1 мм рт. ст. он должен перегоняться в пределах 150—300°. При разделении на 25-градусные фракции плотность и ани- [c.51]

    Жидкие силиконы можно перегонять при нормальном давлении без разложения. Они представляют собой жидкости соломенно-желтого цвета с весьма высоким индексом вязкости и низкой температурой застывания и могут применяться в качестве специальных смазочных масел. Некоторые силиконы вследствие высокой теплостойкости могут применяться в качестве теплоносителей. Из них можно вырабатывать также консистентные смазки, отличающиеся хорошей теплостойкостью и химической стойкостью. Силиконовые смолы с асбестом и стеклянным волокном применяют как уплотнители и прокладочный материал. Силиконовые каучуки стойки, длительно выдерживают воздействие температур до 200°, не становясь при этом хрупкими и не размягчаясь. Силиконовую резину можно вальцевать и перерабатывать в шкурку [161]. [c.209]

    Все углеводороды способны растворять определенное количество воды. Растворимость воды (гигроскопичность) зависит от химического строения и молекулярного веса углеводородов, а также от внешних факторов температуры топлива, влажности воздуха над топливом, атмосферного давления. [c.47]


    В топливах имеются сероорганические соединения, которые при высоких температурах и давлениях на контакте трения могут разлагаться с выделением серы. Сера, реагируя с металлом поверхностей трения, образует сульфиды. Химически активными по отношению к металлическим поверхностям при трении являются также фосфор, хлор и др. [c.62]

    Если пары трения работают при высоких температурах, больших удельных давлениях и скоростях относительного перемещения, то долговечность, надежность и малые износы обеспечиваются только правильным подбором химически активных компонентов жидкой среды. [c.62]

    Основное преимущество топлив на основе боранов в сравнении с керосином — высокие энергетические характеристики, позволяющие увеличить дальность полета летательного аппарата примерно на 40% Кроме того, высокая химическая активность боранов в реакции с воздухом может обеспечить большую высотность летательных аппаратов с реактивными двигателями, чем керосин, так как бора-но-воздушные смеси могут гореть при таких низких давлениях, когда керосин не горит. [c.93]

    Возникновение колебаний при неустойчивом горении, помимо физикомеханических факторов, объясняется наличием периода индукции, т. е. промежутка времени между изменением величины подачи топлива и последующим изменением давления в камере сгорания в результате сгорания топлива. Величина периода индукции зависит от физических процессов (распыление, смешение, испарение) и химической реакции компонентов. При уменьшении периода индукции возможность возникновения неустойчивого режима горения уменьшается. [c.119]

    Методы определения вязкости жидкостей были рассмотрены в гл. П. Вязкость масел зависит как от химического состава и строения углеводородов, из которых состоит масло, так и от внешних факторов давления, температуры и радиоактивного облучения- [c.153]

    Оценка химической стабильности производится по ГОСТ 5734—53. Этот метод заключается в том, что смазку окисляют кислородом в специальной бомбе при повышенных давлениях и температуре. В результате нагревания давление в бомбе сначала повышается, затем держится постоянным до тех пор, пока не начнется поглош,ение кислорода смазкой при окислении ее. Время с момента помещения бомбы в термостат до начала падения давления в ней вследствие окисления смазки считают индукционным периодом. После окисления в бомбе определяют кислотное число смазки. Чем длительнее индукционный период смазки и чем менее повысилось кислотное число по сравнению с начальным, тем выше ее химическая стабильность. Следует отметить, что этот метод очень сложен и имеет ряд существенных недостатков. Однако другого, более простого и надежного, метода пока не разработано.  [c.198]

    Большой механической прочностью молекул отличаются некоторые синтетические жидкости. Жидкости не должны вызывать коррозии металлов гидравлической системы. Высокие температуры и давления способствуют ускорению коррозии, скорость которой зависит также от физико-химических свойств жидкости. [c.213]

    Величина сжимаемости зависит от физико-химических свойств жидкости. Так, легкое минеральное масло, применяемое в жидкостных амортизаторах шасси самолетов, сжимается при повышении давления от О до 3500 кГ/см (при нормальной температуре) на 17% своего первоначального объема, керосин в этих же условиях сжимается на 8,5%. Сжимаемость жидкостей на силиконовой основе приблизительно на 50% выше, чем жидкостей той же вязкости на минеральной основе. [c.214]

    Важную роль при расчете процессов перегонки и ректификации нефтей и нефтяных фракций играют данные по физико-химическим и термодинамическим свойствам нефтяных смесей, такие как плотность, молекулярная масса, давление насыщенных паров, летучесть и энтальпия. [c.38]

    Ит 1к, важнейшими факторами, определяющими тип аппарата, являются агрегатное состояние веществ, участвующих в процессе, их химические свойства, температура, давление, тепловой эффект. [c.27]

    Интенсификация. Увеличение масштабов химических производств требует резкого повышения интенсивности и эффективности производственного оборудования. В больпшнстве случаев это достигается путем интенсификации технологических процессов за счет применения более высоких давлений и повышенных температур, увеличения скоростей, реализации более активных катализаторов и их рационального исиользования, улучшения гидравлических режимов в аппаратах и т. п. В настоящее время есть обо- [c.27]

    Проектные, научно-исследовательские организации н заводы химического машиностроения работают над созданием экономичного оборудования высокого давления для крупнотоннажных производств аммиака( 2720 т в сутки), мочевины, метанола, полиэтилена н других продуктов. [c.54]

    Неметаллические материалы. При изготовлении химических аппаратов для целого ряда активных коррозионных сред наиболее целесообразно применять неметаллические материалы пластические массы (фаолит, винипласт, полистирол), стеклопластик керамику, фарфор, природные кислотоупоры (андезит и гранит). Указанные материалы широко применяют в качестве самостоятельных конструкционных материалов для соответствующих сред, температур и давлений. [c.66]

    Гпббс применил принципы термодинамики при изучении равновесия между различными фазами (жидкой, твердой и газообразной), входящими в одну и ту же химическую систему. Например, вода как жидкость и как водяной пар (один компонент, две фазы) могут существовать вместе при различных температурах и давлениях, но если температура задана, то давление также определено Вода как жидкость, водяной пар и лед (один компонент, три фазы) могут существовать все вместе только при одной определенной температуре и давлении. [c.114]

    Большое значение для последующей химической переработки имеет то обстоятельство, что продукты синтеза Фишера—Тронша имеют преимущественно нормальное строение. На колонках четкой ректификации из них можно выделить индивидуальные компоненты. Содержание олефинов уменьщается по мере увеличения молекулярного веса. Содержание олефинов в продуктах синтеза над кобальтовым катализатором под нормальным давлением приведено в табл, 31. [c.104]

    Циклопропан очищают перегонкой под давлением. На заводе химической компании Маллинкродт в Сент-Луисе в 1936 г. было начато производство циклопропана через 1,3-дихлорпропан. Производительность уже в начальный период составляла 1000 доз для анестезии в сутки. [c.216]

    Возникновение и интенсивность детонации в поршневых бензиновых двигателях определяют скоростью химических реакций пред-пламенного окисления углеводородов и временем, в течение которого эти реакции могут протекать. Скорость химических реакций пред-пламенного окисления зависит от химического состава топлива, от состава горючей смеси (а), а также от давления и температуры. Температура и давление смеси в цилиндре двигателя зависят от температуры и давления воздуха на впуске, степени сжатия, температуры стенок камеры сгорания, поршня и клапанов, а также степени завихрения воздуха в цилиндре, определяющей величину теплоотдачи в стенки. Возникновение детонацион-ного сгорания зависит от ряда конструктивных факторов (размеров и формы камеры сгорания, места расположения свечей и др.). [c.98]

    Наибольшее практическое применение как смазочные масла и жидкости в настоящее время получили метил-, этил-, метилфенил и этилфенилполисилоксаны. Полисилоксаны обычно применяют там, где требуется высокая химическая и термическая стойкость, хорошая вязкостно-температурная характеристика и не предъявляются высокие требования к смазывающей способности масла. Полисилоксаны в смеси с минеральными маслами и в чистом виде используются для передачи давления в различных гидравлических системах в качестве рабочих жидкостей для гидравлических амортизаторов. [c.151]


    Приготовление раствора иода по точной навеске химически чистого иода. Иод обычно содержит примеси хлора, различных соединений иода с другими галогенами, например I I, IBr, I I3, а также гигроскопическую воду. Для очистки его пользуются тем, что давление паров твердого иода, равное атмосферному давлению, достигается при температуре более низкой, чем температура плавления иода. Поэтому, если нагревать твердый иод, он, не плавясь, обращается в пар, который конденсируется, образуя кристаллы на более холодных частях сосуда. Этот процесс испарения твердого тела, происходящего без образо-улнш жидкой фазы, называется возгонкой или сублимацией. [c.402]

    ГОСТами установлены ряды давлений, емкостей, диаметров сосудоЕч п аппаратов (см. 3,2) типы п размеры сосудов и аппаратов стальных сварных, чугунных аппаратов, чугунных эмалированных, медных, стальных высокого давления. На ряд конструкций машинного и немашинного оборудования, применяемого во многих химических производствах, разработаны государственные и отраслевые стандарты и нормали. Нормализована аппаратура с защитными покрытиями эмалированная и емкостная гуммированная из неметаллических материалов (фаолита, винипласта, уг.ле-графита) емкостная нз цветных металлов, В последние годы пересмотрена устаревшая и создана новая нормативно-техническая документация на высокопроизводительные машины и аппараты для химических ироизводств, проводится дальнейшая унификация оборудования, его деталей и сборочных единиц с целью новыше-ння их качества, надежности и заводской готовности. [c.27]

    Повышение надежности. Иадежпость — одно из необходимых условий бесперебойной и длительной работы аппаратов н машин. Прочность, жесткость, устойчивость, долговечность (срок службы) и герметичность определяют механическую надежность обопудо-вання. В химических установках вопросы 1шдежиости тесно связаны со специфическими условиями работы оборудования — широким диапазоном температур и давлений, а также с агрессии-костью рабочей среды. [c.30]

    Однако технический прогресс ставит перед машиностроителями все новые и новые задачи. Ведутся научно-исследовательские и проектные работы по дальнейшему совершенствованию конструкций и технологии изготовления корпусов аппаратов высокого давления, а также работы по созданию сосудов диаметром 5000 мм и технологии пх изготовления или доизготовления на месте монтажа. Эти работы имеют большое значение для дальнейшего увеличения мощ юстей химических, нефтехимических и других производств. [c.53]

    Конструкция аппаратов, работающих под давлением свыше 0,07 МПа, должна отвечать требованиям отраслевого стандарта ОСТ 26-291—71 Сосуды и аппараты стальные сварные. Технические требования , а также Правил устройства и безопасной эксплуатации сосудов, работающих под давлением, утвержденных Госгортехнадзором СССР 19 мая 1970 г., с изменениями, внесенными 25 декабря 1973 г. ОСТ 26-291—71 распространяется на сосуды и аппараты сварные стальные, иредназначенные для химических и нефтехимических п[)онзводств. [c.54]

    На отечественных заводах химического машиностроения из титана и его сплавов освоено изготовление некоторых типов центрифуг, фильтров, выпариых и емкостных аппаратов, кожухотрубчатых теплообменников жесткой конструкции (поверхность теплообмена 10—140 м ), теплообмепников с плавающей головкой, Н-об-разпых в титановом и футерованном исполнении. Выпускают аппараты с перемешивающими устройствами диаметром 600— 2000 мм, емкостью до 14 м->, предназначенные для работы под давлением до 5 МПа при температурах от —50 до +300° С тарельчатые, насадочные и безнасадочные колонны диаметром 400— 2800 мм—для. проведения различных массообменных процессов под давлением до 2 МПа при температурах от —50 до +300° С. [c.66]

    Фланцевые соединения. В аппаратах химических производств они являются одннм из наиболее распространенных и ответственных соединений. Правильный их выбор в значительной степени предопределяет надежную работу сосудов и аппаратов. Фланцы к аппаратам и штуцерам выбирают ио соответствующим стаидар-та.м по условному проходу, условному давлению, а также в зависимости от температуры среды. [c.78]

    Химическая аннаратура в процессе эксплуатации может работать ирн атмосферном давлении, под внутренним избыточным давлением, иод вакуумом илп под наружным давлением, а также ири уста н)акс аипаратуры иа открытых площадках иод действием вет-ров )1х или сейс.мнческнх Е.озденств.и (нагрузок). [c.149]

    Центробежные герметичные э л е к т р (З и а с о с ы. Для перекачивания химически активных, радиоактивных, токсичных и легковоспламеняющихся жидкостей, а также жидкостей, находящихся под воздействием высоких температур и давлений, при недопустимости утечки жидкости и ее наров наружу следует применять бессальпиковые герметичные электронасосы (рис. 5.7). Их выпускают двух типов химические герметичные вертикальные [c.180]


Библиография для Химические от давления: [c.303]   
Смотреть страницы где упоминается термин Химические от давления: [c.114]    [c.40]    [c.180]    [c.18]    [c.75]    [c.78]    [c.15]    [c.346]    [c.39]    [c.50]    [c.51]    [c.56]    [c.59]    [c.68]    [c.129]   
Основы общей химии Том 2 Издание 3 (1973) -- [ c.126 ]




ПОИСК







© 2025 chem21.info Реклама на сайте