Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химические от энергии активации

    Дальше будет показано, что это приводит к такому положению, при котором простые операции по измерению константы скорости, порядка и энергии активации химической реакции не дают необходимых данных для установления истинного механизма химической реакции. Задача установления истинного механизма реакции требует от экспериментатора большой изобретательности нри выборе критерия для обоснования отдельных стадий, совокупность которых составляет предполагаемый механизм сложного процесса. [c.283]

    Выделение водорода из недиссоциированных молекул кислоты (так же как и из молекул воды) требует значительной энергии активации и возможно лишь в области весьма отрицательных потенциалов. В то же время непосредственный разряд ионов водорода Н+ совершается со значительно меньшими торможениями. Поэтому акт переноса заряда (15.55 6) предполагает предварительную стадию диссоциации уксусной кислоты, приводящую к образованию ионов водорода. Таким образом, здесь стадии переноса заряда предшествует чисто химическая стадия диссоциации кислоты. Если она замедлена, то вблизи электрода возникает дефицит ионов водорода по сравнению с равновесным и появляется реакционное перенапряжение. Уравнение (15.55 6) в действительности сложнее и само слагается из нескольких стадий, например переноса заряда с образованием атомов водорода, адсорбированных металлом Наде [c.321]


    При концентрационной поляризации, в отличие от химической, энергия активации не изменяется с изменением поляризации. [c.48]

    Образование свободных радикалов может происходить в процессе распада вещества при нагревании, освещении, под действием ядерных излучений, от сильных механических воздействий, при электроразряде и т. д. Свободные радикалы рождаются также в процессе самых разнообразных химических превращений. Энергия активации реакций с участием ионов также н значительна (0—80 кДж/моль). Для осуществления же реакций непосредственно между молекулами обычно требуется высокая энергия активации, поэтому такие реакции весьма редки.,  [c.199]

    Более поразительные отклонения от нормального поведения обнаружены в реакциях СН-кислот, т. е. кислот, в которых подвижный протон связан с атомом углерода. Большую часть информации такого рода первоначально получали при изучении кислотно-основного катализа, и она будет рассмотрена в этой книге ниже. Однако в настоящее время известны доказательства, основанные на прямых измерениях скорости. Действительно, некоторые из этих реакций настолько медленные, что могут быть изучены стандартными методами, без использования каких-либо специальных методик, описанных в этой главе. Так, медленные реакции между нитропарафинами и ионами гидроксила были хорошо известны с того времени, как о них впервые сообщил Ганч [47], и привели к введению термина псевдокислота, который все еще иногда используется для описания всех СН-кислот. Некоторые значения констант скоростей, полученных прямым измерением, приведены в табл. 20. Все перечисленные реакции термодинамически очень выгодны (Ар/С>4), но константы скорости их тем не менее заметно ниже величины 10 ° дм -моль с- характеризующей диффузионный контроль. Из этого следует, что реакции имеют значительную величину химической энергии активации. Это связывают с неспособностью атома углерода при- [c.158]

    Было предположено, что энергию активации электрохимических реакций можно разложить на химическое и электрическое слагаемые. Первое из них отвечает тому случаю, когда скачок потенциала между металлом и раствором ( mil) равен нулю его можно обозначить через Uq. Второе слагаемое отвечает изменению энергии активации вследствие создания электрического поля в двойном слое за счет появления скачка потенциала g MiL это слагаемое [c.348]

    Аналогично и энергию активации можно представить как сумму химической и электрической энергий, т. е. в виде [c.356]

    Одним из наиболее распространенных в химической практике методов ускорения химических реакций является катализ. В присутствии катализатора изменяется путь, по которому проходит суммарная реакция, а потому изменяется ее скорость.Катализаторы—это вещества, изменяющие скорость реакции за счет участия в промежуточном химическом взаимодействии с компонентами реакции, но восстанавливающие после каждого цикла промежуточного взаимодействия свой химический состав. Увеличение скорости катализируемой реакции связано с меньшей энергией активации нового пути реакции.  [c.204]

    Если в системе проходит несколько параллельных и последовательных реакций, то, выбирая соответствующим образом параметры проведения процесса, можно изменить его направление и получить разные продукты с различными выходами. Для изменения энергии активации интересующей нас реакции иногда используются селективные катализаторы, т. е. ускоряющие только данную химическую реакцию. Благодаря применению селективных катализаторов и изменению параметров проведения контактного процесса можно из одного и того же исходного вещества получать разные продукты. [c.272]


    Хотя в этой модели вводится энтропия активации, что позволяет учитывать структурные изменения, однако она имеет дело с переходным комплексом, свойства которого не могут быть изучены и проверены независимо от кинетических данных. Так, например, V является здесь средней частотой для переходного состояния и, хотя возможно, что она имеет то же значение, что и V для нормальной молекулы, тем не менее такая эквивалентность только постулируется. Достоинством этой модели является то, что она дает представления о свойствах переходного комплекса и намечает путь, по которому такое представление может привести к установлению связи между молекулярной структурой и химической реакционноспособностью. На практике Н+ можно отождествить с экспериментальной энергией активации, но разделить экспериментально частотный фактор между V и 8= " невоз- [c.225]

    Интересно, отметить, что так как сорбция является экзотермической в большинстве случаев, то скорость сорбции обычно превышает скорость десорбции. Это означает, что молекулы продукта реакции в гомогенной фазе обычно находятся в равновесии с адсорбированной фазой. Это не всегда справедливо в отношении реагирующих веществ, так как сорбция во многих случаях является химической реакцией с атомами поверхности. Поэтому сорбция может иметь некоторую энергию активации и протекать очень медленно. [c.536]

    Большая часть из рассмотренного выше экспериментального материала указывает на то, что механизм каталитических реакций на твердых поверхностях включает реакцию атомов (или ионов) катализатора с адсорбатом, причем образуется мономолекулярный слой химически активных промежуточных веществ. Так как первичным актом хемосорбции является химическая реакция, то естественно ожидать, что она может иметь некоторую энергию активации. Вообще хемосорбция является очень быстрым процессом и осуществляется с большой вероятностью при соударении молекулы газа с поверхностью . Зачастую даже в тех случаях, когда поверхностный мономолекулярный слой близок к насыщению и можно было бы ожидать уменьшение скорости сорбции, скорость реакции уменьшается незначительно [46]. Этот факт объяснялся тем, что на поверхности мономолекулярного слоя образуется второй, слабо связанный слой сорбата, который способен быстро мигрировать к незанятым активным центрам поверхности. [c.550]

    Хемосорбция является термодинамически выгодным процессом. Поэтому ограничение химической реакции новерхностным слоем чаще всего является результатом большой энергии активации дальнейшего взаимодействия между сорбатом и сорбентом. Это в особенности проявляется при хемо- орбции Ог на металлах или их окислах. В случае большинства металлов [c.551]

    Из этого уравнения следует, что скорость химической реакции зависит от природы реагирующих веществ (размеров и весов молекул, их ориентации в пространстве при столкновении и т. п.), от их концентрации и температуры (энергия активации является функцией тоже температуры). [c.226]

    Изучена [101] каталитическая активность в реакциях гидрирования бензола и этилена граней монокристаллов никеля и кристаллографически хорошо определенных частиц нанесенного Ni-катализатора диаметром 5,0 нм. Химически полированные кристаллы никеля, ориентированные по граням (110), (111), (100) очищали последовательным окислением и восстановлением прн 495 и 439°С. Показано, что каталитическая активность грани (111) несколько выше, чем для других граней. Активность ориентированного по грани (111) нанесенного катализатора несколько меньше, чем для случайно ориентированного. Эффективная энергия активации равна 46 кДж/моль. На основании этих данных был сделан вывод [101], что реакция гидрирования этилена более [c.55]

    Каталитические превращения в системе газ — твердое тело (контактные процессы). Условие промышленного использования химической реакции — достижение большого выхода продукта за возможно меньшее время проведения этой реакции. Однако можно привести много примеров реакций, которые с термодинамической точки зрения должны в определенных условиях проходить с большим выходом продукта, но в действительности протекают очень медленно. Это связано с большим значением энергии активации таких реакций. [c.271]

    В некоторых случаях (например, под влиянием незначительного изменения химического состава катализатора или небольших количеств примесей в реакционной системе) происходит одновременное изменение предэкспоненциального множителя и энергии активации в уравнении константы скорости каталитической реакции, [c.271]

    В этой первой промежуточной области кажущаяся онергия активации полного превращения равна примерно половине хилптческой энергии активации. В случае частиц катализатора с относительно малой внутренней новерхностью возможно существование второй промежуточной области с химической энергией активации (кривая 5, участок (н) . В этой области внутренняя поверхность не сильно активна и скорость превращения определяется химической реакцией на внешней поверхности. Таким образом, приходим к выводу, что экспериментально определяемые величины энергии активации гетерогенных реакций (каталитических или некаталитических) часто не соответствуют реальной энергии активации хилшческой реакции, и, следовательно, нельзя экстраполировать экспериментальные результаты на другую температуру. Также нельзя проводить экстраполяцию на частицы другого размера. [c.178]

    Столь сильное влияние заместителя было отнесено на счет электростатического взаимодействия [52] в активированном комплексе и привело к созданию общей теории химической энергии активации [53]. Было постулировано, что для осущес вления взаимодействия двух молекул орбиты основного состояния должны раскрыться для того, чтобы они могли принять электроны, образующие новую связь. Наиболее энергетически выгодной оказывается при этом поляризация реагирующих связей, приводящая к образованию полуионной нары. Таким образом, присоединение НХ к олефину может быть представлено следующей схемой  [c.31]

    В табл. 2 дано сравнение энергии диссоциации газового реагента с истинной химической энергией активации, соответствующей реакции углерода с газом, которое, согласно Россбергу [32], подтверждает вышеуказан- [c.38]

    Особенно важное значение имеет временная зависимость механических воздействий, которая выражается в явлениях упругих последействий, зависящих от времени релаксации . Статистическими методами можно вычислить время релаксации как функцию от температуры с повышением температуры ускоряются реакции стекла на механические воздействия. Эти реакции можно трактовать как химические. Энергия активации для них представляет величину того же порядка, что и в прюцессах электропроводности и химической коррозии. Точно так же В1ремя релаксации, проявляющееся в продолжительности свечения фосфоресценции, можно объяснить, пользуясь терминами химической механики . Смайли и Уэйл в сильно закаленных ура-нилсодержащих стеклах наблюдали фосфоресцентное послесвечение как типичное структурно-чувствительное свойство, зависящее от химического состава стекла (например, от содержания щелочных или щелочноземельных катионов в борных стеклах). Этот эффект уменьшается с повышением содержания щелочей, что представляет полную аналогию с эффектом затухания звуковых волн. [c.115]


    При электрохимической реакции прямой контакт между реагирующими частицами заменяется их контактом с соответствую-и им металлом. Прн этом реакция и связанные с ней энергетические изменения остаются теми же (независимо от того, протекает она но химическому или же электрохимическому нути), но кинетические условия могут быт з различными. Энергия активации при электрохимическом механизме благодаря каталитическим свойствам металлов может быть иной, чем при гомогенном химическом механизме, кроме того, оиа зависит от потенциала. В электрохимических реакциях обязательно участвуют электроны, а часто и другие заряженные частицы — катионы и анионы, что составляет одну нз и. основных характерных особенностей. Энергия таких частиц, естественно, является функцией электрического поля, создаваемого на границе электронопроводяи1,ее тело — электролит. [c.11]

    Теория электрохимического перенапряжения была разработана применительно к процессу катодного выделения водорода, а затем распространена на другие электродные процессы. Основой этой теории служит классическое учение о кинетике гетерогенных химических реакций. Количественные соотношения между величиной перенапряжения г и плотностью тока / были получены при использовании принципа Бренстеда о параллелизме между энергией активации 7а и тепловым эффектом <3р (или изобарным потенциалом АО) в ряду аналогичных реакций. Квантовомеханическая трактовка электродных процессов начала формироваться лишь сравнительно недавно, хотя отдельные попытки в этом направлении предпринимались уже начиная с середины 30-х годов (Герни, О. А. Есин и др.). Основные исследования в этом направлении были выполнены Бокрисом, Догонадзе, Христовым и др. [c.346]

    Исиользоваине катализаторов ускоряет химические реакции и заменяет одностадийный процесс, требующий большой энергии активации, многостадийным, с меньшей энергией активацн[[. Так как катализаторы не ускоряют [c.98]

    За исключением триэтаноламина, у которого отсутствует реакционноспособный атом азота, химические реакции с другими аминами подобны рассмотренным реакциям с моноэтаноламином. Шарма и Данквертс [15] измерили величину кхт для моноизо-нропаноламина, составивщую при 18 С 3200 л (г-мол-сек) для моноэтаноламина эта величина при той же температуре составляет 4100 л г-мол сек). Энергия активации для всех аминов, а также для аммония составляет 11 000 кал [15—16]. [c.148]

    Энтропия активации. Кроме энергии активации важным условием осуществления химической реакции является ориентация молекул в момент столкновения. Нетрудно заметить, что перераспределению электронной плотности в активном комплексе А2...В2 более всего благоприятствует условие, когда при столкиовении молекулы А2 и 83 ориеичированы, как это показа1Ю на рис. 116, а, тогда как при ори- [c.197]

    Фтср исключительно активен химически, он — сильнейший окислитель Высокая химическая активность фтора объясняется тем, что его мопекула имеет низкую энергию диссоциации (159 кДж/моль), в то время как химическая связь в больишнстве соединений фтора отличается большой прочностью (порядка 200—600 кДж/моль). Кроме того, энергия активации реакций с участием атомов фтора низка (< 4 кДж/моль). По образному сражению акад. А. Е. Ферсмана, фтор Бсесъедающий . В атмосфере фтора горят такие стойкие вещества, как стекло (в виде ваты), вода  [c.281]

    Ценность этой классификации заключается в том, что именно природа промежуточного химического взаимодействия, а не агрегатное состояние реакционной системы определяет свойства, кото — рыми должен обладать активный катализатор. Так, при гомолити — ческом катализе разрыв электронных пар в реагирующем веществе обычно требует большой затраты энергии. Для того, чтобы тепловой эффект, а следовательно, и энергия активации этой ст адии не были бы слишком большими, одновременно с разрывом электронных пар должно протекать и образование новых электронных пар с участием ь еспаренных электронов катализатора. [c.80]

    Физическая адсорбция протекает практически без энергии аьтивации. Хемосорбция,подобно химической реакции, осуществляется со значительной энергией активации, и с повышением температуры ее скорость возрастает в соответствии с величиной энергии активации по закону Аррениуса. [c.86]

    В кинетическом отношении каталитическая реакция будет идти с большей скоростью, если в результате промежуточного химического взаимодействия катализатор будет снижать энергию активации химической реакции (или одновременно повышать пред— экспонент Аррениуса). Это правило согласуется с принципом компенсации энергии разрывающихся связей в катализе. Оно согласуется также с принципом энергетического соответствия мультип — летной теории A.A. Баландина. [c.88]

    V не зависит от температуры, так что величина Е, которая представляет собой разность энергий активированной частицы и нормальной молекулы (обе в своих самых низших энергетических состояниях), может быть идентифицирована с экспериментальной энергией активации. Разработка этой теории явилась серьезным шагом вперед по сравнению с теорией столкновений, поскольку она рассматривает химическую реакцию с точки зрения моЛеку-лярной структуры. Однако она сильно страдает от использования классиче- кoii модели для структуры молекулы. Одним из следствий этого последнего обстоятельства является то, что все внутренние колебания нормальных и активных частиц должны быть полностью возбужденными, частоты идентичными, и разность энтропии для разных состояний не должна влиять на суммарную константу скорости и поэтому она не входит явно в уравнение для скорости. [c.225]

    Таким образом, прежде чем какой-либо ряд данных надежно использовать в теории мономолекулярных реакций, необходимо полностью установить химическую сложность реакции и влияние стенок сосуда. В настоящее время имеется только несколько случаев, которые исчерпывающе и убедительно изучены. Это реакции разложения N2O5 [120], циклопропана [121] и N2O4 [83]. Во всех этих случаях частотные факторы оказались аномально высокими (1015—101 сек 1). Вледствие этого характеристическое давление, при котором можно было наблюдать падение констант скоростей первого порядка, было выше, чем оно предсказывалось для молекул такой сложности (см. табл. XI.2). В каждом случае реакции проявляют качественные особенности, которые характерны для промежуточной области концентрации (как константа скорости, так и энергия активации уменьшаются с уменьшением давления при постоянной температуре). [c.235]

    Самые ранние попытки создания таких методов расчета энергий активации были предприняты Лондоном [110], и они приводили к чрезвычайно приближенным результатам. Последующие попытки Вилларса [111], Эйринга [112] и Эйринга и Поляни [113] улучшить точность метода с помощью исполь- чования эмпирических приемов не были плодотворными, и успех работы будет зависеть от развития техники квантовомеханических расчетов. Отоцаи [114] высказал предположение, что длина связи между атомами в молекуле, претерпевающей химическое превращение, определяется точкой перегиба на кривой потенциальной энергии для двухатомной молекулы. Вместе с дополнительными предположениями о конфигурациях комплекса (не очень отличающихся от допущений метода Эйринга) это позволяет вычислить 1нергии активации для трех- и четырехатомных систем результаты, полученные по этому методу, находятся в несколько лучшем согласии с экспериментальными данными. [c.279]

    Величина Е в уравнениях (VIII-32) — (VIH-38) —это энергия активации, т. е. избыточное количество энергии по сравнению со средним уровнем энергии исходных веществ, необходимое для их участия в химической реакции. Энергия активации выражается в кал/моль, что следует из единицы измерения универсальной газовой постоянной (кал К моль- ). [c.215]

    Таким образом, зависимость скорости химической реакции от температуры характеризуется двумя постоянными предэкспонен-циальным множителем и энергией активации Е. Чем выще значение Е, тем меньше скорость реакции, если предположить, что [c.215]


Смотреть страницы где упоминается термин Химические от энергии активации: [c.100]    [c.156]    [c.10]    [c.12]    [c.298]    [c.67]    [c.197]    [c.162]    [c.15]    [c.343]    [c.11]    [c.219]    [c.216]    [c.268]   
Основы общей химии Том 2 Издание 3 (1973) -- [ c.129 ]




ПОИСК





Смотрите так же термины и статьи:

Химическая энергия

Энергия активации



© 2024 chem21.info Реклама на сайте