Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химические элементы чистые

    Сплавы. Металлы в чистом виде применяют на практике гораздо реже их сплавов. Это связано с тем, что сплавы часто обладают более высокими техническими качествами, чем чистые металлы. Так, латунь (сплав меди и цинка) значительно тверже меди и цинка отдельно взятых. Сплавы, как правило, плавятся при более низких температурах, чем образующие их металлы. Так, температуры плавления натрия и калия соответственно равны 97,5 и 62,3 °С. Сплав же, состоящий из 56% (масс.) Na и 44% (масс.) К, плавится при 19 °С, Удельные электрические сопротивления сплавов и образующих их металлов также значительно отличаются. Например, удельное сопротивление никеля равно 7-10 , хрома—15-10- , а их сплава — нихрома [80% (масс.) Ni + 20% (масс.) Сг] —110-10- Ом-ем. В настоящее время в технике применяют большое число различных сплавов, обладающих заранее заданными свойствами, причем для их получения используют более 40 химических элементов в самых разнообразных сочетаниях и ко личественных соотношениях, [c.397]


    Все природные белки содержат пять химических элементов, чисто которых в различных белках близко и колеблется в незначительных пределах 50—53 % —С, 7 —8%—Н, 20-24%-О, 16-18%-К 0,5-1,8%-8. [c.360]

    Химический состав металлов и сплавов влияет на их стойкость. Химические свойства чистых металлов зависят от их атомного числа, определяющего сродство к кислороду, водороду и другим элементам. Однако химические свойства металлов, используемых в технике, отличаются от свойств чистых металлов [c.18]

    Периодический закон, установив закономерное изменение свойств элементов при возрастании их атомных весов, положил конец господству чисто эмпирического метода изучения химических свойств различных элементов и их соединений. Он остается и в настоящее время незыблемой основой систематики различных свойств химических элементов и их соединений. [c.16]

    Долгое время в качестве единицы атомной массы была принята /16 часть средней массы атомов природного кислорода, состоящего из изотопов 0, и 0. Эта единица составляла основу химической шкалы атомных масс. В основе же физической шкалы лежала 716 часть массы изотопа 0. Переходный множитель от одной шкалы к другой 1,000275. Существование двух шкал атомных масс создавало определенные трудности. Разница между ними намного превышает точность определения атомных масс современными физическими и физико-химическими методами. В 1961 г. Международный конгресс по чистой и прикладной химии (ШРАС) утвердил единую углеродную шкалу атомных масс. Основа ее — атомная единица массы (а.е.м.), равная /12 части массы изотопа углерода С. По углеродной шкале относительные атомные массы водорода и кислорода соответственно равны 1,0079 и 15,9994. Таким образом, атомная (элементная) масса — среднее значение массы атома химического элемента, выраженное в атомных единицах массы. Изотопная масса — масса данного изотопа в атомных единицах массы. Молекулярная масса — масса молекулы, выраженная в атомных единицах массы она равна сумме масс всех атомов, из которых состоит молекула. [c.16]

    Основной особенностью фреймов является их иерархическая структура. ФР обычно соответствует представлению общего понятия в виде таксономической (классификационной) иерархической структуры, как было показано на рис. 4.3—4.5. Особенность такой иерархической структуры состоит в том, что информация об атрибутах, которую содержит ФР верхнего уровня, совместно используется всеми ФР нижних уровней, связанными с ним. Например, атрибут металлы является общим с атрибутами химический элемент и чистые вещества , которые находятся на самом нижнем уровне. Такая структура позволяет систематизировать и запоминать схожие понятия химии и химической технологии, избегая лишних сложностей, касающихся информации об атрибутах, и добавлять новые понятия или знания в соответствующие позиции в этой иерархии при обучении. При этом упрощается обнаружение противоречий в знаниях и управление последовательностью знаний [49]. [c.126]

    Рассматриваются свойства элементов, физико-химические константы чистых веществ и минералов, молекулярные свойства веществ (поверхностное натяжение, вяэ КОСТЬ, теплоемкость и т. д.), оптические и электрические данные. [c.127]

    К 1870 г. накопилось много новых знаний о химических элементах. Обобщив их, Д. И. Менделеев в первом издании книги Основы химии помещает второй вариант своей таблицы, которую назвал Естественной системой элементов (табл. 5). Эта таблица имела уже более четкую структуру и завершенную форму. В ней введена нумерация валентных групп от первой до восьмой, введены понятия периода и ряда, которые тоже пронумерованы. В таблице зарезервировано 27 свободных мест, что обусловлено ее внутренними структурными закономерностями. Для одиннадцати элементов Менделеев предсказывал химические свойства, для десяти — изменил атомные веса, основываясь на закономерности их роста в ряду (Ве, 1п, V, Ьа, Се, ТН и др.), еще у десяти элементов подправил атомные веса.Как видим, он все основательнее воплощал в реальность интегративную роль атомного веса в построении системы. И хотя ряда в чистом виде так и не построил, но осознавал его присутствие и опирался на него. [c.56]


    Ti — химический элемент IV группы 4-го периода периодической системы элементов Д. И. Менделеева, п. н. 22, ат. м. 47,90. Т. относится к переходным элементам. Природный Т. состоит из смеси пяти стабильных изотопов, известны шесть радиоактивных изотопов. Т. открыт в 1795 г. М. Клапротом, однако достаточно чистый металл удалось получить только в 1925 г. ван Аркелю и де Буру. В земной коре содержится [c.251]

    После открытия периодического закона понятие валентности, бывшее до тех пор чисто эмпирическим, стало рассматриваться как функция принадлежности данного элемента к той или ипой группе. Д. И. Менделеев указывал, что с открытием закона атомность (валентность) наряду с атомной массой становится важнейшей характеристикой химического элемента. Ныне для характеристики элемента, — писал он в 1871 г., —кроме прочих данных требуются... знание атомного веса и знание атомности. Закон периодичности, выставляя зависимость этих двух данных, дает возможность определить одно из них, а именно так называемую атомность посредством другого, т. е. атомного, веса, а потому он [c.269]

    Химическая коррозия металлов имеет место при их взаимодействии с газами м парами химических элементов при отсутствии влаги, а также с жидкостями, не проводящими, электрический ток и не являющимися электролитами. Металл в этол/1 случае разрушается за счет чисто химических реакций на границе раздела его со средой. Такой вид коррозии характерен для лопаток газовых турбин, деталей реактивных двигателей, печ- [c.6]

    В перспективе несомненно эволюционная теория достижения того или иного химического равновесия и адаптации веществ к нему перестает быть чисто умозрительной, а станет существенной и для практики. Захватывающий интерес представляет собой эволюционная теория рождения и превращений химических элементов на звездах, смыкающаяся с учением о космогонической эволюции. [c.373]

    ГАФНИЙ (Hafnium, от древнего названия Копенгагена) Hf — химический элемент IV группы 6-го периода периодической системы элементов Д. И. Менделеева, п. н. 72, ат. м. 178,49 природный Г. состоит из шести изотопов. Положение Г. в периодической системе предсказал Д. И. Менделеев задолго до его открытия. Основываясь на выводах Н, Бора о строении атома 72-го элемента, Д. Костер и Г. Хевеши обнаружили этот элемент в минералах циркония и назвали его. Г.— рассеянный элемент, не имеет собственных минералов, в природе сопутствует цирконию (I — 7%). Г.— серебристо-белый металл, т. нл. 2222 30 С чистый Г. очень пластичен и ковок, легко поддается холодной и горячей обработке. По своим химическим свойствам очень близок к цирконию, потому их трудно разделить. В соединениях Г. четырехвалентен. Металлический Г. легко поглощает газы. На воздухе Г. покрывается тонкой пленкой оксида HfOj. При нагревании реагирует с галогенами, а при высоких температурах — с азотом и углеродом, [c.65]

    Никель (N i) химический элемент VHI группы периодической системы Д. Н. Менделеева с атомным номером 28 и атомным весом А = 58,69. Температура плавления чистого никеля /ил = 1455° С, удельный вес у = 8,9 г см теплопроводность при [c.157]

    В монографиях содержатся общие сведения о свойствах элементов и их соединений. Затем излагаются химические реакции, являющиеся основанием для аналитических целей. Методы как физические, так и физико-химические и химические излагаются применительно для количественного определения данного химического элемента, начиная с анализа сырья, далее типичных полупродуктов производства и, наконец, конечной продукции, металлов или сплавов, окисей, солей и других соединений и материалов. Как правило, приводятся принципы определения и, где это необходимо, дается точное описание всего процесса определения. Необходимое внимание уделяется быстрым методам анализа. Самостоятельное место занимает изложение методов определения так называемых элементов-примесей в чистых материалах. [c.3]

    Постоянства состава закон (Пруст, 1801 —1808 гг.) — любое определенное химически чистое соединение независимо от способа его получения состоит из одних и тех же химических элементов, причем отношение их масс постоянны, а относительные числа нх атомов выражаются целыми числами. Один из основных законов химии, П. с. 3. не распространяется на большую группу соединений переменного состава (бертоллидов). [c.107]

    На примере так называемых редкоземельных элементов можно продемонстрировать трудность чисто химического доказательства, что вещество является элементом. В 1839 г. щведский химик Карл Мозандер экстрагировал из нитрата церия новый элемент, названный им лантаном (от греческого лантанейн , что означает спрятанный ). Спустя два года он показал, что препарат, содержащий лантан, включает в себя еще один элемент, который он назвал дидимием (от греческого дидимос , означающего близнец ), В 1879 т. Франсуа Лекок де Буабодран выделил из препарата диди-мия еще одно вещество, самарий, и все эти вещества считались химическими элементами. Дидимий прекратил свое существование в химии в 1885 г., когда австриец Карл Вельсбах разделил его на два новых элемента-неодим ( новый близнец ) и празеодим ( зеленый близнец ). Лишь наличие у нас периодической системы элементов и понимание принципов, на которых она основана, позволяют быть уверенным, что между водородом iH и элементом с номером 105 нельзя уже открыть никаких новых элементов. [c.271]

    Человек постепенно проникал в тайну состава и строения всех природных тел, находил способы разложения их на простые и составные части и совершенствовал методы выделения химических элементов в чистом виде. Только после этого началось изучение их свойств и распространенности на Земле и в других космических телах, что привело к возлюжности постановки вопроса о происхождении химических элементов. [c.5]

    Высокочувствительны активационные методы определения натрия (до 10 ° г натрия), преимущественно применимые для определения натрия в особо чистых химических элементах и их соединениях. Методы выделения радиоизотопов натрия 6 носителем требуют дальнейшего усовершенствования. [c.5]

    В табл. 22 приведены термические свойства химических элементов в чистом виде температуры плавления и кипения, удельная теплоемкость. Эти данные имеют определенное значение в понимании геохимической миграции элементов, особенно в том случае, если они в процессе миграции временами пребывают в химически несвязанном (самородном) состоянии. [c.41]

    Мы здесь не будем касаться различий в современном применении терминов химический элемент , чистый элемент и вид атомов . В настоящем труде под видом атомов подразумеваются все те атомы, которые обладают одинаковым ядерным зарядом, так что они, за немногими исключениями (без которых, пожалуй, можно было бы обойтись), обозначаются одним и тем же общим символом даже при усовершенствованной транскрипции. Существенным является лишь признание необходимости собирательного понятия, охватывающего самые разнообразные модификации, причем к этим модификациям относятся не только изотопы (которые, по Панету, считаются отдельными видами атомов) и т. п., но и различные дискретные состоя- [c.213]

    Химические элементы, встречающиеся в природе, большей частью являются смесями изотопов. Их можно назвать многоизотопными элементами, в то время как изолированные изотопы представляют собой собственно чистые элементы. Изотопы эле-( мента занимают одно и то же место в периодической системе элементов, поэтому они обладают одинаковыми зарядами, но разными массами атомных ядер. Чистые элементы и различаются, например, только тем, что в первом случае атомное ядро содержит шесть, а во втором случае — семь нейтронов. Атомные массы, которыми оперируют в химии, представляют собой усредненные значения атомных масс отдельных изотопов. [c.219]


    Самый распространенный в природе переходный металл — железо Ке, элемент побочной подгруппы VIII группы периодической системы химических элементов Д. И. Менделеева. Атомный номер его 26, относительная атомная масса 55,847. Чистое железо — блестящий серебристо-белый металл. Железо — один из наиболее распространенных элементов в природе, по содержанию в земной коре (4,65% по массе) уступает лишь кислороду, кремнию и алюминию. Оно входит в состав многих оксидных руд — гематита, или красного железняка Гв20з, магнетита Гез04 и др. [c.156]

    Попытки построения единой системы химических элементов вещества и антивещества были предприняты Е. И. Ахумо-вым. В 1962 г. в развитие его идей появляется статья [14], в которой приводится "расширенный вариант Периодической системы элементов Д. И. Менделеева, включающий атомы, составленные из античастиц". Система состоит из двух зеркальных половин. Подход чисто формальный. По существу, вторая зеркальная половина общей системы химических элементов вещества и антивещества является симметричной только таблице химических элементов вещества, а не выражением физической симметрии строения атомов. Такое решение проблем не может быть научно убедительным, так как не раскрывает генетической сути перехода материи из вещества в антивещество и обратно. Но концептуально она верна. Генетическая же ее суть может быть понята только на уровне атомных переходов, на примере построения "сопряженных" систем атомов вещества и антивещества, что мы и видим на рис. 13. Квадранты I и II этой системы являются, по существу, единым "шахматным полем", где действуют единые (сквозные) правила игры. [c.135]

    В начале столетия вещество считалось чистым, если оно содержало меньше 0,1% примосей. Ни науке, ни практике (за редким исключением) еще не были нужны особо чистые вещества. Даже в тридцатых годах нашего сто-ления проблема чистоты веществ не стояла особенно остро. Содержание примесей порядка 1 млн.- в то время представляло интерес только для геохимиков, оперирующих такими числами при описании распределения химических элементов в земной коре. Металлурги считали вещество достаточно чистым, если в нем содержалось не более чем 0,01 % примесей. [c.411]

    Все задачи на определение химического состава соединений решаются на основании закона постоянства состава веществ количественный и качественный состт химически чистого вещества всегда постоянный и не зависит от способа его получения. Другими словами, химические элементы при образовании данного соединения всегда взаимодействуют между собой в строго определенных количествах. Если в состав вещества входят элементы А и В, то, в соответствии с законом, постоянства состава, [c.15]

    Т " ервая часть книги, включающая главы I—VI, посвяЩ(Зна рас-смотрению длительного процесса возникновения и развития химического искусства и постепенного превращения его в химическую науку — периода с древнейших времен до конца XVIII в. За это время химическое искусство прошло длинный путь — от начальных представлений об элементах-стихиях до учения о реальных химических элементах, путь от чисто гипотетических рассуждений о составе вещества к опытному изучению отдельных химических элементов и их соединений. [c.7]

    Заслуга Р. Бойля в том, что он впервые дал правильное толкование понятию химического элемента. Отрицая понятие элементы перпнатетиков (огонь, вода, воздух, земля) п понятие принципы алхимиков и иатрохимиков (ртуть, сера, соль), Р. Бойль предложил химико-аналитическое определение элемента, которое вписывалось в программу работ хпмиков-аналитиков того периода. Перед химией вставала новая задача — научиться выделять в чистом виде отдельные вещества и устанавливать их состав, т. о. определять, из каких конкретных частей состоит данное тело и каким комплексом физико-химических свойств оно обладает. Для этого предстояло значительно усовершенствовать качественный и количественный анализы, убедиться в воспроизводимости экспериментальных результатов. [c.41]

    После получения чистого образца какого-либо вещества определяют химические элементы, имеющиеся в этом соединении. Проба Лассеня позволяет обнаружить наличие в веществе азота, серы и галогенов. Для этого небольшое количество вещества смешивают в пробирке с натрием, нагревают в пламени горелки, а затем продукт реакции растворяют в дистиллированной воде. При этом азот превращается в цианид натрия, сера — в сульфид натрия, а галогены — в галогениды натрия. [c.739]

    Это выражение можно упростить. Химические потенциалы чистых элементов в их стандартных состояния.х равны нулю (стр. 294). и no iTo.viy для чистого электрода hm(- V) =0. Далее, пусть концентрация раствора бучет такой, чтобы актпЕность ионов была равна единице. Тогда разность потенциалов па говорхности раздела металл — раствор будет [c.368]

    Химический потепцпал чистого элемента равен нулю, т. с. i(M) = u. Нерастворимая соль — это чистая твердая фаза, и поэтому она находится в своем стандартном состоянии, где ее химический потенциал равен, u. ix- Химический потенциал иоиа Х можно выразить через его активность обычным путем. Следовательно, межфазная разность потенциалов между металлом и рас-творо.м равна [c.372]

    Оки сл ительные процессы выветривая ия, расходующие воздушный кислород, идут при характер.ной для земной поверхности н изкой температуре и протекают весьма медленно, иногда в одну или несколько ступеней, постапенно присоединяя кислород к минеральным веществам до полного их насыщения, т. е. до наиболее устойчивого для земных условий состояния образующихся окислов". Примером таких медленных окислительных процессов является получение окислов различных металлов (окись железа, глинозем, представляющий собой окисел алюминия, и т. п.). Характерным и хорошо нам знакомым процессом в этом отношении является ржавление железа, которое под воздействием кислорода воздуха из чистого простейшего химического элемента превращается сначала в закись железа, молекула которой представляет собой соединение одного атома железа (Fe) с одним aTOMiOM ки1Слорода  [c.26]

    Учебный материал темы расположен в такой последовательности, которая позволяет хорогно прослеживать взаимосвязь понятий, видеть их развитие. Действительно, выяснив в общем смысле, что такое вещества, учащиеся переходят к изучению легко определяемых физических свойств, что позволяет, с одной стороны, конкретизировать понятие вещество , а с другой — усвоить новое понятие чистое вещество . От этого материала легко перейти к изучению явлений физических и химических. Осознать их различие позволяют понятия молекула и атом . Поскольку становится ясно, что атом — важное понятие химии, то при его конкретизации оказывается необходимым знание видов атомов. Отсюда делается переход к формированию понятия химический элемент и изучению химической символики (знаков). [c.58]

    Однако в последние два-три десятилетия, когда возникли такие новые разделы общей химии и общей биохимии, как биооргарпеская и бионеорганическая (биокоординационная) химия, положение изменилось. Оказалось, что в биологических процессах органические соединения участвуют ие как таковые в чистом виде, а в виде молекул, координированных вблизи ионов или молекул неорганических соединений. Только в результате такой координации возникают соответствующие электронные и геометрические структуры, способные осуществлять ту или иную биологическую функцию. В этом процессе активирования или дезактивирования органических биологически активных молекул могут принимать участие не только классические биоэлементы (макро- и микроэлементы) такие, как Ма, К, Mg, Са, В, V, Мо, Мп, Ре, Со, но и все другие химически активные элементы. Опыт гомеопатии показывает, что все химические элементы, даже в очень небольших ( гомеопатических ) количествах оказывают сильное воздействие на живой организм. Естественнй предположить, что все химически активные элементы периодической системы, находящиеся вокруг нас постоянно, или в большой, или в малой, или в ничтожной концентр ации, всегда находились и находятся внутри живого организма и взаимодействуют с ним, включаясь в органическую структуру молекул или их ассоциатов. Опыт современной экологии также подтверждает эту мысль. [c.45]


Смотреть страницы где упоминается термин Химические элементы чистые: [c.10]    [c.69]    [c.72]    [c.95]    [c.129]    [c.185]    [c.193]    [c.239]    [c.515]    [c.20]   
Основы общей химии Том 2 Издание 3 (1973) -- [ c.241 , c.248 , c.538 ]




ПОИСК





Смотрите так же термины и статьи:

Элемент химический

или г химически чистый



© 2025 chem21.info Реклама на сайте