Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цезий поляризация

    Ионы, имеющие большие заряды [железо (III), алюминий], характеризуются и значительными величинами энтальпии и энтропии. Теоретическое вычисление теплот гидратации связано с учетом целого ряда слагаемых. После первых, грубо приближенных расчетов по Борну было сделано много попыток так или иначе улучшить теоретический метод. К. П. Мищенко и А. М. Сухотин, исходя из предположения, что эффективный радиус молекулы воды в гидратной оболочке равен 0,193 нм, предложили метод расчета, в котором были приняты во внимание экзоэффекты взаимодействия иона с жесткими диполями воды, а также ориентационной и деформационной поляризации диполей воды, дисперсионные силы между ионом и молекулами воды, взаимное отталкивание диполей в гидратной сфере, отталкивание иона и диполей при перекрытии их электронных оболочек, поляризация растворителя гидратным комплексом и взаимодействие между водой и гидратным комплексом, отвечающее экзоэффекту. Большое число факторов, принятых во внимание в этих расчетах, делает их результаты наиболее надежными. Между прочим указанные авторы пришли к выводу, что тепловое движение не может существенно влиять на координационные числа гидратации вероятность того, что данная молекула в гидратном слое покинет его и оставит свободное место в гидратной оболочке иона, колеблется по порядку величины от 10 (ион лития) до 10 (ион цезия), т. е. ничтожно мала. [c.255]


    Увеличение чувствительности в области более длинных волн с уменьшением работы выхода при такой обработке катода можно объяснить поляризацией атомов цезия, адсорбированных атомами кислорода образовавшегося оксида цезия. Сенсибилизация кислородом требует большой осторожности. Чистый кислород для этой цели получают по уравнению реакции [c.339]

    Система жидкость — жидкость. Экстракционное выделение рубидия и цезия из их смесей с другими щелочными металлами в системах жидкость — жидкость имеет определенные особенности, объединяющие щелочные металлы в обособленную и до сих пор сравнительно мало исследованную группу. Щелочные металлы обладают большой способностью к образованию хорошо диссоциирующих в водных растворах ионных соединений. Для того чтобы перевести из водного раствора в органический растворитель гидратированный ион щелочного металла, необходимо затратить определенную энергию, равную, по крайней мере, сумме энергий гидратации иона, ориентации и поляризации растворителя. Компенсация этих видов энергии энергией комплексообразо-вания и сольватации иона может привести к тому, что образо- [c.348]

    Как видно нз рис. 23, интенсивность полосы поглощения, обусловленной амфотерным ионом, монотонно возрастает при переходе от хлористого цезия к хлористому литию при соблюдении прочих идентичных условий. Аналогичная зависимость интенсивности полосы от размера катиона наблюдалась также для сульфатов щелочноземельных металлов однако в этом случае интенсивности полос были несколько больше, чем для галогенидов щелочных металлов, показывая, что растущие силы поляризации дважды заряженных катионов сдвигали равновесие дальше вправо. Это может быть частично обусловлено другими факторами, включающими различия между хлоридами и сульфатами. Даже несмотря на то, что интенсивности полос были больше при адсорбции на окислах, чем на соответствующих сульфатах, все же и они уменьшались с увеличением размера катиона. [c.58]

Рис. 110. Тафелевская зависимость восстановления 5-10 персульфата цезия в растворе 2 10 М хлористого цезия на ртутном капельном электроде (внизу) и исправленные тафелевские зависимости той же системы (вверху). Ток исправлен на концентрационную поляризацию. (Фрумкин, Петрий и Николаева-Федорович [15].) Рис. 110. Тафелевская зависимость восстановления 5-10 персульфата цезия в растворе 2 10 М хлористого цезия на ртутном капельном электроде (внизу) и исправленные тафелевские зависимости той же системы (вверху). Ток исправлен на концентрационную поляризацию. (Фрумкин, Петрий и Николаева-Федорович [15].)
    Иными словами, тенденция состоит в том, что обращение сродства начинается не с системы цезий калий. Если совместное влияние индуцированной поляризации и многозарядного взаимодействия достаточно велико, обращение сродства может начаться даже с системы [c.157]

    Ионной поляризацией объясняются некоторые отступления в величинах температур плавления и кипения щелочных металлов. Следовало бы ожидать, что температуры плавления и кипения соединений лития будут наибольшими в ряду аналогичных солей натрия, калия, рубидия и цезия из-за большой величины энергии кристаллической структуры и малого размера иона лития [c.205]

    Заманчивым технологическом отношении является использование экстракционных методов очистки солей шелоч-ных металлов. Эти методы имеют определенные особенности, объединяющие щелочные металлы в обособленную и до сих пор сравнительно малоисследованную группу [18, 19]. Щелочные металлы обладают большой способностью к образованию хорошо диссоциирующих в водных растворах ионных соединений. Для того, чтобы перевести из водного раствора в органический растворитель гидратированный ион щелочного металла, необходимо затратить определенную энергию, равную по крайней мере сумме энергий гидратации иона, ориентации и поляризации растворителя. Компенсация этих видов энергии энергией комплексообразования и сольватации иона может привести к тому, что образовавшийся гидрофобный комплекс нарушит структуру воды и перейдет в органическую фазу. Учитывая, что энергия сольватации значительно слабее энергии гидратации, а способность щелочных металлов к образованию комплексных соединений с органическими лигандами довольно ограничена, не приходится удивляться, что экстракционное разделение калия, рубидия и цезия в системе жидкость—жидкость изучено далеко недостаточно. [c.114]


    Из табл. 2 видно, что наименьший коэффициент поляризации рубидия и цезия и наибольший коэффициент поляризуемости ионов рубидия и цезия выделяют их среди других в группе щелочных элементов. Невысокий коэффициент поляризации определяет высокую термическую устойчивость солей рубидия и цезия по сравнению с соединениями других щелочных элементов и способность рубидия и цезия образовывать прочные соединения с комплексными анионами. Металлические рубидий и цезий получают металлотермическими методами — восстановлением солей (преимущественно хлоридов) активными металлами (предпочтительно кальцием). [c.31]

    Электрохимический механизм разложения амальгам не единственный из предложенных в последнее время. Так, Хат-нагар с сотрудниками [30,31] проводил разложение амальгам натрия и калия водой, облучая их поляризованным и не-поляризованным светом. Он установил, что на свету скорость разложения возрастает, причем существенным фактором является направление светового потока относительно поверхности амальгамы. Это позволило автору считать первой ступенью процесса разложения амальгамы эмиссию электронов. Скляренко и Сахаров нашли, что скорость разложения амальгамы находится в зависимости от атомного веса металла. Наиболее быстро разлагается амальгама лития, а наиболее медленно — амальгама цезия [32—34]. В работе Бокриса и Уотсона [35] приводятся результаты измерения перенапряжения водорода на амальгамах лития, натрия, калия и бария (табл. 3). Методика этих опытов состояла в катодной поляризации ртути в растворах соответствующих гидроокисей при определенной плотности тока. Поляризация осуществлялась до наступления равновесия между скоростью образования амальгамы и скоростью ее разложения. Это равновесие характеризовалось достижением максимального для данных ус- [c.116]

    Как показывают кривые рисунка 68, в этом опыте интенсивность фотоэффекта вовсе не зависела однозначно от положения плоскости поляризации падающего на катод света и очень близко следовала как в случае Е , так и в случае Е распределению амплитуды электрического поля, подсчитанному на основе оптических свойств платины. Это распределение приведено на рисунке 68 в виде пунктирных кривых. В точках а п Ь фотоэффект в случае оказался даже интенсивнее, чем в случае Е >. Таким образом, для плёнок цезия на платине в этом случае нельзя говорить о векториальном эффекте. [c.145]

    В частности, для фторидов с малыми размерами атома фтора имеет большое значение поляризация, в особенности при комбинации наиболее крупного атома цезия со фтором. Эта поляризация, упрочняя связь, укорачивает межъядерное расстояние и, таким образом, способствует большому втягиванию атома фтора внутрь атома цезия. На рис. 210—212 никак не отражены изменения электронных облаков, зависящие от обменного эффекта антисимметризации или от поляризации, но втягивание центра атома фтора в оболочку щелочного металла и замедление в росте межъядерного расстояния заметны. [c.228]

    Структурный фазовый переход и тепловое расширение в кристаллах дигидрофосфата калия КН2РО4 [15]. Кристаллы дигидрофосфата калия КН2РО4 (КВР) принадлежат большому классу одноосных сегнетоэлектриков, нашедших широкое применение в радиоэлектронной промышленности. Возможность широко варьировать состав этих кристаллов путем изоморфного замещения атомов калия атомами рубидия, цезия и других элементов, а также замещения атомов водорода атомами дейтерия, позволяет существенно изменять их физические характеристики, такие, как температура Кюри Гк, величина спонтанной поляризации и т. п. [c.158]

    Минимальным поляризующим действием в ряду Ь —Сз должен был бы обладать Сз. Однако согласно последним сведениям иону Сз+ в некоторой степени свойствен эффект дополнительной поляризации. Поэтому в соединениях, включающих наряду с Сз+ сильно поляризующиеся анионы, благородно-газовая электронная оболочка иона Сз+(4с( °5525Р ) испытывает деформацию, приводящую к возникновению химической связи катион—анион, включающей значительную ковалентную составляющую. По-видимому, только фторид цезия СзР свободен от такого рода поляризационных взаимодействий. Уже для СзС1 теоретический расчет показывает значительный перенос заряда с хлора на цезий, в результате чего эффективный положительный заряд на атоме цезия много меньше чем -Ь1. Поляризационными эффектами может быть объяснен своеобразный характер изменения температуры плавления безводных галогенидов ЩЭ (подробно см. в работе [1,. с. 35])  [c.14]

Рис. 10.8. Циклическая вольтамперограмма МО моль/л водного раствора цезия скорость поляризации 5 мВ/с органическая фаза 0,05 моль/л раствор тетрафенилбората тетрабутиламмония в нитробензоле водная фаза - 0,05 мош>/л Ь1С1 Рис. 10.8. Циклическая вольтамперограмма МО моль/л водного раствора цезия скорость поляризации 5 мВ/с органическая фаза 0,05 моль/л раствор тетрафенилбората тетрабутиламмония в нитробензоле водная фаза - 0,05 мош>/л Ь1С1
    Рубидии и цезий обладают замечательными оптическими свойствами, заключающимися в том, что в ультрафиолетовой части спектра эти металлы становятся прозрачными. Их показатель преломления в прозрачной области меньше единицы (явление полного внутреннего отражения). Границы проз.рачности калия, рубидия и цезия расположены только в области длинных волн при 315, 360 и 440 нм соответственно [49]. Различия в значениях работы выхода электрона (Луо) (см. табл. 3) в основном могут быть вызваны состоянием поверхности металла, в частности наличием пленки окислов, увеличивающей значение /п о и снижающей фототок. Максимальная длина волны света (Хо), способная вызвать фотоэффект и называемая поэтому красной границей фотоэффекта или его порогом , вычисленная из данных табл. 3, равна для рубидия и цезия 570 и 650 нм соответственно. Необходимо заметить, что красная граница при увеличении температуры металла смещается в сторону больших длин волн. Поверхность рубидия и цезня обладает избирательным фотоэффектом. Максимум фоточувствительности у кл-лия, рубидия и цезия (в вакууме) лежит около 440, 470 и 480 нм соответственно. Кроме спектральной селективности достаточно толстые жидкие слои рубидия и цезия с зеркально гладкими повгрх-ностями обнаруживают также поляризационную селективность, т. е. зависимость фоточувствительности от состояния поляризации и угла падения света на поверхность [34, 49]. [c.79]

    Интересно отметить, что при изучении механизма образования азидов по этой реакции [207, 208] было установлено влияние поляризации и относительных размеров катиона на содержание азида Me(NN N) в его смеси с азидом Me(N NN). В лабораторной и промышленной практике получения азидов рубидия и цезия находит применение также метод Р. Зурмана и К. Клузиуса [203]. По этому методу водный раствор карбоната соответствующего щелочного металла нейтрализуют азотистоводородной кислотой, перегнанной из реакционной колбы, содержащей смесь NaNa и 6%-ной серной кислоты. Для полного перевода карбоната в азид в реакцию вводят избыток азотистоводородной кислоты. Кристаллы после промывки водой сушат при 80° С. [c.108]


    В настоящее время проводится работа по исследованию строения иона и радикала азида методом молекулярных орбиталей [85], однако для наших целей достаточно рассматривать ион азида как отрицательно заряженный, способный к поляризации эллипсоид вращения с большой и малой полуосями, равными 2,54 и 1,76 А соответственно [86]. Предполагается, что диагональные составляющие тензора поляризуемости иона сравнимы с поляризуемостью бромид-иопа. Учитывая, что такие ионы находятся в решетке азида калия вместе с катионами, характеризующимися потенциалом ионизации 4,32 эв, можно вычислить расстояние в единицах энергии между центрами тяжести валентной зоны, образующейся из заполненных 2/ -уровней атомов азота, и зоны проводимости, образующейся в основном из незаполненных 4s-op-биталей калия, используя для этого просто электростатическую (маделунговскую) энергию решетки, которая, согласно Джекобсу [87], а также Грею и Уоддингтону, равна для азида калия 7,012 эв. При этой сильно упрощенной модели, в которой не учитывается ни расширение полос, ни поляризация, запрещенная зона оказывается равной 12,75 эв для азида калия, 11,9 эв для азида натрия и 11,5 эв для азида цезия. [c.140]

    Основное препятствие при удалении микрокомпонента из солей рубидия и цезия — это изоморфная сокристаллизация. В применявшихся ранее соединениях для целей разделения она не могла быть устранена. При выборе таких соединений обычно не учитывался тот факт, что на изоморфную кристаллизацию большое влияние оказывает поляризация ионов. Если степень поляризации сильно различается, то даже при равенстве радиусов ионов можно избежать образования изоморфных смесей. Поляризуемость (деформируемость) и поляризующая способность элементов, как известно, вообще весьма существенно сказывается на их химическом поведении, в частности на устойчивости соединений. Что же касается близких по свойствам щелочных элементов, то как раз среди их немногих наиболее различающихся физических характеристик одно из первых мест принадлежит поляризуемости ионов (коэффициент поляризуемости К — 0,87, Rb — 1,87, s — 2,79). В связи с этим большой интерес представляют такие соединения, в которых взаимная поляризация ионов особенно валика. В этом отношении среди различных комплексных соединений несомненно выделяются изо-или гетерополигалогениды щелочных элементов [191, 192] или, иначе, их анионгалогенааты [193]. [c.87]

    Во всед рассмотренных выше молекулах связь является промежуточной между предельно-ковалентной М Х я предельно-ионной М +Х —, переходя от преобладаюш,е ковалентной лишь с небольшой степенью ионного характера (иоди-стый водород) через связь с примерно равным участием ковалентного и ионного состояния (фтористый водород) к преобладающе ионной связи с небольшой степенью ковалентного характера (фтористый цезий). Можно попытаться сделать грубые качественные оценки типа связи в этих молекулах на основании данных по дипольным моментам. Если бы связи в галоидоводородах были чисто ковалентными, то можно было бы ожидать, что электрические дипольиые моменты будут малы. С другой стороны, для ионных структур Н+Х моменты должны приближаться по величине к произведению заряда электрона на межъядерное расстояние (мы пренебрегаем небольшим уменьшением, обусловленным поляризацией аниона в поле катиона). В табл. 2 приведены значения равновесных межъядерных расстояний кд. электрических моментов еН,, вычисленных для ионных структур Н Х наблюденных значений электрических моментов и отношений ( ./еЕ . [c.54]

    Обычно форму молекул качественно связывают с понятием о гибридизации, но, возможно, что этот прием, приводящий к хорошим результатам для соединений элементов малых периодов окажется несостоятельным в более низких ее частях. Так, в случае Са, 5г, и особенно Ва, существует много разных низколежащих в энергетической шкале электронных конфигураций поэтому выбор, например, между гибридизациями вр или s может быть спорным. Поляризация и гибридизация велики, когда электронная оболочка атома галогена проникает глубоко внутрь электронной оболочки атома металла, дскажая при этом ее контурную диаграмму плотности. Это легче происходит в случае маленьких атомов фтора и больших атомов цезия или бария, т. е. тогда, когда и ионность связи будет наибольшая из-за большой разности атомных радиусов металла и галогена. [c.249]

    Согласно уравнению (83), знак константы сверхтонкого взаимодействия с ядром щелочного катиона в ионной паре, обусловленного поляризацией остова пр-электроном, совпадает со знаком аъ1 п Р). Экспериментальные значения ам п Р) приведены в табл. 4 вместе с экспериментальными значениями аш(п 8). Эти величины рассчитаны по спектральным термам состояний п Р и п 8 свободных атомов щелочных металлов [93 94]. По-видимому, ам (п Р) составляет лишь небольшую долю величины аж п 8). Поэтому для данного щелочного металла область измеряемых положительных констант сверхтонкого взаимодействия должна быть гораздо больше, чем область отрицательных констант, что противоречит данным эксперимента. Далее оказывается, что константа аж(п Р) явно отрицательна только для лития. Таким образом, следует ожидать, что наибольшую тенденцию к отрицательным константам сверхтонкого взаимодействия должны проявлять литиевые ионные пары, а не рубидиевые или цезиевые, что тоже не согласуется с опытом. Так, например, соответствующие константы отрицательны для ионных пар бифенила и нафталина с рубидием и цезием [79, 81, 95], тогда как для соответствующих литиевых ионных пар они пололсительны [95]. Поэтому следует признать,, что описание ионных пар, включающее только возбуждение металлической части ионной пары, недостаточно для объяснения отрицательных спиновых плотностей на ядрах щелочных металлов. [c.379]

    В литературе часто встречается утверждение, сог.аасно которому малые значения энергии активации (например, порядка 3—4 калорий) характеризуют диффузионную кинетику электрохимического процесса, более высокие 5ке значения указывают па наличие определяющей скорость процесса медленной химической или электрохимической стадии. Действительно, снижепие энергии активации, связанное с ростом поляризации, во многих случаях переводит электродные процессы из кинетической в диффузионную область. Однако этот вывод не может быть обобщен на все реакции. Как было показано Н. ]5. Николаевой [31], в случае восстановления аииона иерсу.льфата на ртутном электроде кажущаяся энергия активации процесса .иизка к нулю при потенциалах, при которых скорость процесса значительно меньше предельной скорости дг-иффузион-ной стадии, а нри протекании процесса на фоне цезия кажущаяся энергия активации может иметь даже отрицательное значение .  [c.11]

Рис. 9.6. Циклическая вольтамперограмма 1-10 М водного раствора цезия [19]. Скорость поляризации 5 мВ/с (сплошная линия). Водная фаза 0,05 М водный раствор Ь1С1 органическая фаза 0,05 М нит-робензольный раствор тет-рабутиламмонийтетрафенил-бората. Пунктирная линия индифферентный электролит штриховая линия вольтамперограмма иона цезия, скорректированная с учетом тока индифферентного электролита. Рис. 9.6. Циклическая вольтамперограмма 1-10 М водного раствора цезия [19]. Скорость поляризации 5 мВ/с (сплошная линия). Водная фаза 0,05 М водный раствор Ь1С1 органическая фаза 0,05 М нит-робензольный раствор тет-рабутиламмонийтетрафенил-бората. Пунктирная линия индифферентный электролит штриховая линия вольтамперограмма иона цезия, скорректированная с учетом тока индифферентного электролита.

Смотреть страницы где упоминается термин Цезий поляризация: [c.21]    [c.146]    [c.129]    [c.436]    [c.436]    [c.367]    [c.146]    [c.105]    [c.51]    [c.153]    [c.327]   
Основы общей химии Том 2 Издание 3 (1973) -- [ c.300 ]




ПОИСК





Смотрите так же термины и статьи:

Цезий

Цезий цезий



© 2025 chem21.info Реклама на сайте