Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цезий сродство к электрону

    Рассмотрим соединение Сз+Аи-. На первый взгляд это соединение кажется несуществующим, так как представляет собой ионное соединение двух металлов в отличие от С5+1 . Однако значения энергии ионизации цезия и сродства к электрону золота и иода (или электроотрицательность золота, равная 2,54, и электроотрицательпость иода, равная 2,66) показывают, что существование такого соединения возможно. Если процесс его получения проводить путем смещивания двух металлов (Сз и Аи), то невозможно будет различить, что образовалось — ионное соединение или сплав. [c.361]


    Поэтому оказывается, что на весь процесс образования газообразных ионов цезия и хлора из газообразных атомов должна быть затрачена энергия, равная 2,9 ккал. Поскольку цезий является наиболее электроположительным из элементов (т. е. имеет наименьшее значение /), а хлор обладает наибольшим сродством к электрону, может показаться, будто атомные системы всегда более стабильны, чем ионные системы (наиболее устойчива та система, которая обладает наименьшей энергией). Однако в данном случае не учтен один фактор — сила притяжения, которая начинает действовать между противоположно [c.69]

    В периодах, как правило, ионизационный потенциал возра- стает слева направо, при этом восстановительная активность уменьшается, а окислительная—увеличивается ввиду возрастания величины сродства к электрону. В гомологических рядах ионизационный потенциал падает сверху вниз увеличивается восстановительная активность и падает окислительная активность, так как величина сродства к электрону падает. Наиболее сильные окислители расположены в правой верхней части таблицы (фтор, кислород, хлор, сера и др.) восстановители сосредоточены в нижней левой части таблицы (франций, цезий, радий,барий, лантан и др.), [c.127]

    Цезий — один из наиболее электроположительных металлов. Химически очень активен, что обусловлено малым сродством к электрону, легкостью отдачи валентного электрона. В ряду напряжений цезий расположен далеко впереди водорода и вытесняет его из воды, образуя при этом сильное основание СзОН. Цезий самовоспламеняется иа воздухе. [c.59]

    Эта реакция представляет собой частный случай явления перезарядки частиц газа в разряде и возможна только тогда, когда электронное сродство атома X больше, чем энергия ионизации атома У. Единственным случаем, когда это условие выполняется, является столкновение между атомами фтора и цезия. [c.114]

    Сродством к электрону обладают не только свободные атомы, но и молекулы. Сродство к электрону молекулы Ог равно 0,87 эв, атома же О—1,46 эв. Относительно малое сродство к электрону молекулы Оа делает невозможным присоединение к ней электрона от большинства атомов металлов. Однако атомы калия, рубидия и цезия, обладая наименьшими ионизационными потенциалами по сравнению с другими металлами, могут передавать свои валентные электроны молекулам кислорода. Та же причина обусловливает возможность передачи двух электронов от атомов натрия молекуле кислорода, что ведет к образованию иона O , каждый атом которого, несет один отрицательный заряд. Качественно иное поведение лития в реакции с кислородом связано с тем, что его ионизационный потенциал больше, чем у остальных щелочных металлов. Причина различия в составе продуктов окисления натрия и более тяжелых щелочных металлов не может здесь обсуждаться. [c.158]

    Возможность образования катиона определяется потенциалом ионизации атома или величиной энергии, необходимой для удаления электрона с самого высокого занятого уровня в бесконечность. Способность атома принимать электроны и становиться анионом характеризуется его сродством к электрону, т. е. энергией, выделяющейся при перенесении электрона из бесконечности на самый низший незанятый электронный уровень атома. Способность же атомов поляризовать ковалентную связь, как мы уже говорили, обусловлена их относительной электроотрицательностью, которая равна полусумме потенциала ионизации и электронного сродства атома, выраженных в килокалориях. Электроотрицательность элементов периодической системы убывает справа налево и сверху вниз следовательно, фтор будет наиболее, а цезий наименее электроотрицательным (или наиболее электроположительным) элементом. Чем больше разница между значениями электроотрицательности атомов, тем сильнее выражен ионный характер существующей между ними связи. Атомы элементов, находящихся в левой части таблицы Д. И. Менделеева, и прежде всего [c.31]


    Гидриды рубидия и цезия МеН в зависимости от метода получения представляют собой либо белое сильно блестящее вонлоко-образное вещество, либо белую довольно плотную массу. Подобно гидридам других щелочных металлов, гидриды рубидия п цезия имеют кубическую гранецентрированную решетку типа хлорида натрия [69]. Основные физико-химические свойства НЬН и СзН приведены в табл. 4. Гидриды рубидия и цезия относятся к солеобразным соединениям, содержащим анион Н , который по своим физическим особенностям близок к галогенид-ионам. Наличие структуры Ме" —Н можно объяснить большим потенциалом ионизации атома водорода (13,595 эв) по сравнению с потенциалом ионизации рубидия и цезия (см. табл. 1) и наличием у атома водо- рода небольшого сродства к электрону (0,75 эв) .  [c.82]

    Итак, атом цезия как бы с некоторого расстояния стреляет своим электроном в молекулу ВГг, не затрачивая при этом энергии в результате компенсации эндоэффекта разрыва ВГз и отрыва электрона от Се экзоэффектами сродства Вг к электрону и взаимного притяжения ионов. После [c.241]

    При изучении термической устойчивости азидов металлов вообще необходимо учитывать отклонения от чистоионного типа связи. Однако в настоящем обзоре мы будем исходить из предположения, что перенос электрона является полным, и принимаем, что потенциалы ионизации натрия, калия, рубидия и цезия соответственно равны 5,12, 4,32, 4,16 и 3,87 ав, а сродство радикала азида к электрону —3,05 эв. Однако как указал Грей [1] для вычисления энергии решетки нет необходимости вводить предположение о чисто ионном характере связи. Энергия решетки ККд и NaNз составляет соответственно 157 и 175 ккал-молъ . Указанные значения энергий решетки аналогичны таковым для галогепидов этих металлов, хотя температуры плавления азидов (320—350°) значительно ниже, чем у соответствующих хлоридов и бромидов [1,66]. [c.139]

    На основе аналогичных рассуждений Мулликен нашел исправленные значения электроотрицательности, приведенные в табл. 9. К ним для сравнения добавлена величина электроотрицательности для лития. Сродство лития к электрону было оценено приближенно, но так как оно очень мало, то достаточной оказывается даже очень грубая оценка. Таким образом, для щелочных металлов величина 1+Р определяется главным образом значением I. Как видно, электроотрицательность щелочных металлов уменьшается в соответствии с ожиданиями от лития к цезию. Далее, электроотрицательность металлов подгруппы меди оказывается большей, чем щелочных металлов. Электроотрицательность как щелочных металлов, так и металлов подгруппы меди значительно меньше, чем водорода, и с этой точки зрения водород ближе к галоидам, чем к щелочным металлам. [c.172]

    Во-вторых, суммарное электростатическое поле всех ионов в кристалле создает некоторый дополнительный потенциал, действующий на каждый ион. Как мы видели, этот потенциал усиливает взаимодействие ионов друг с другом в ам раз. Если случайно в катионном узле окажется отрицательно заряженный ион, то кристаллическое поле вытолкнет этого нахала из чужого дома с силой, в 1,7 раза большей (например, в хлориде натрия или цезия), чем это сделал бы один одноименно заряженный ион. Судьба катиона в анионном узле будет столь же плачевной. Таким образом, в кристалле создается постоянно действующее периодическое поле с фазой, меняющей знак при переходе от катионного узла к анионному и обратно. Поскольку высокий отрицательный заряд в анионном узле оказывается благоприятным для электростатического взаимодействия с окружающими катионами, маделунгов-ское поле увеличивает до некоторой степени сродство к электрону всех атомов, находящихся в анионных узлах, и ослабляет его для всех атомов в катионных [c.67]

    Фтор — наиболее электроотрицательный элемент (4,0 по шкале Полинга), а цезий — наименее электроотрицательный (0,7). Как видно на рис. 17-4, электроотрицательность зависит от положения элемента в периодической системе. Если рассматривать группу галогенов сверху вниз, то обнаруживается, что атомы становятся менее электроотрицательными вследствие возрастающего экранирования заряда ядра внутренними электронами. Атомы щелочных металлов легко теряют внешние электроны и поэтому обладают низкой электроотрицательностью. Кроме того, их электроотрицательность уменьшается в подгруппе сверху вниз, потому что расстояние внешнего электрона от ядра становится все больше и больше и, следовательно, электрон притягивается все слабее и слабев. Электроотрицательности можно определить из энергий связей и из суммы ионизационного потенциала и сродства к электрону. [c.523]

    Кроме действия тория, Ленгмюр и его сотрудники [203, 204] обнаружили действие на эмиссию и других мономолекулярных слоёв. Так, если ввести в катодную лампу пары металла цезия, то эмиссия вольфрамовой яити чрезвычайпо усиливается. Энергия, которую нужно затратить, чтобы оторвать от атома цезия валентный электрон, меньше, чем. работа выхода электрона КЗ вольфрама. Иначе говоря, сродство металлической поверх-иости вольфрама к электрону больше, чем сродство иона цезия к электрону. Когда нейтральны атом Сз в своём движении близко подходит к поверхности накалённой вольфрамовой нити, го вольфрам отнимает валентные электроны у атомов цезия. Образующиеся таким образом ионы цезия удерживаются на гюверхности нити электростатическими силами и образуют на вольфрамово нити положительно заряженный мономолекуляр-иый слои. [c.110]

    Заменителем плазмообразующего топлива выступил ракетный баллиститный порох на основе нитроцеллюлозы и нитроглицерина, как не содержащий элементов с высокой энергией сродства электрону (хлора, фтора и т.п.), присутствие которых в продуктах сгорания может снизить концентрацию электронов проводимости за счет их захвата с образованием отрицательных ионов. Для повышения температуры горения в состав топлива введено металлическое горючее -порошок алюминия или сплав алюминия с магнием в количестве, близком к термодинамически оптимальному (23...27 % асс)- В качестве легкоионизирующейся присадки был выбран азотнокислый цезий в количестве от 10 до 15% асс. [c.62]

    В соответствии со сказанным, самыми сильными восстановителями являются элементы, находящиеся в начале каждого периода и в конце I главной подгруппы (элементы цезий 55Сз, франций ваРг)- Их атомы имеют самые низкие значения энергии ионизации. Самыми сильными окислителями являются элементы, располагающиеся в правом верхнем углу таблицы периодической системы (фтор, кислород, хлор). Атомы этих элементов обладают наивысшими значениями сродства к электрону. [c.85]

    Потенциал ионизации элемента и его сродство к электрону являются количественными характеристиками способности атомов этого элемента терять или приобретать электроны при определенных условиях. Наряду с данными о размерах атома, его порядковом номере и валентности они позволяют делать предсказания о химических свойствах элементов, однако на практике учет всех перечисленных факторов оказывается довольно сложным. Гораздо удобнее пользоваться обобщенной эмпирической характеристикой химических свойств элементов, называемой электроотрицательностъю. Под электроотрицательностью элемента понимают относительную способность его атомов притягивать электроны для оценки этой способности устанавливается условная шкала. Крайние точки этой шкалы соответствуют электроотрицательности цезия 0,7 и фтора 4,0. В отличие от сродства к электрону и потенциала ионизации электроотрицательность рассматривается как характеристика элементов в любом окружении, независимо от того, свободные ли это атомы или части молекулы. Как и следовало ожидать, периодические изменения электроотрицательности элементов соответствуют изменениям их потенциалов ионизации, сродства к электрону, атомных размеров и т.п., причем фтор является наиболее электроотрицательным элементом, а цезий—наименее электроотрицательным, не считая благородных газов. [c.102]


    С водой взаимодействие происходит с воспламенением и взрывом.. При электролизе водных растворов на катоде выделяется не металл, а водород, так как он имеет больщее сродство к электрону. Современный промышленный метод получения этих металлов — электролиз расплавленных хлоридов. Из-за сильного электроположительного характера металлы с водородом образуют гидриды, где водород ведет себя как электроотрицательный элемент К+И",, КЬ+Н , Сз+Н . В струе хлора металлы подгруппы 1А самовоспламеняются и сгорают, излучая ослепительный свет. Взаихмодействие их с жидким бромом происходит с сильным взрывом. На воздухе они тотчас же окисляются, а рубидий и цезий способны к самовоспламенению. При этом образуются пероксидные соединения различного состава. Во влажной атмосфере металлы быстро тускнеют и покрываются коркой гидроксида, а при нагревании легко взаимодействуют с большинством неметаллов известны их интерметаллические соединения. Рассматриваемые элементы довольно легка теряют электроны при нагревании или освещении. Этим свойством пользуются при создании фотоэлементов и термоэмиттеров. Можно заметить, что все перечисленные свойства элементов подгруппы калия иллюстрировались на примере К, КЬ и Сз, а франций оставался как бы в стороне. Дело в то >л, что франций — радиоактивный элемент и является одним из самых короткоживущих. Сочетание двух качеств самого тяжелого активного металла с низкой ядерной устойчивостью создает большие трудности и препятствия в изучении этого элемента. Поэтому большинство его свойств выявлено экстраполяцией на основе сведений о поведении его аналогов но подгруппе. [c.281]

    Ионная гетерополярная) связь обусловлена электростатическим взаимодействием разноиме]нно заряженных ионов. В соответствии с законом Кулона ионы"притягиваются друг к другу с силой, пропорциональной зарядам валентности и обратно пропорциональной квадрату расстояния между ними. Ионная связь легче всего, образуется между элементами с низким ионизационным потенциалом, для которых характерна отдача электронов, и элементами с высоким сродством к электрону, которые охотно присоединяют электроны. Эта связь характерна между элементами с резко выраженными металлическими (I, II группы) и неметаллическими (VI, VII группы) свойствами. Критерием образования ионной связи является разность величин электроотрицательности элементов. Например, для цезия и фтора Д = 4,0 — 0,7 = = 3,3, следовательно, фторид цезия — типично ионное соединение. Образование хлорида натрия вследствие реакции между натрием и хлором — классический пример ионной связи  [c.160]

    Суммируя значения вычисленных энергий ионизации и энергии сродства к электрону, получим для цезия g=90 ккал(г-атом, для литиями = 128 ккал1г-атом. Это абсолютное значение [c.47]

    В некоторых случаях различие в сродстве атомов поверхностного слоя и подлежащего металла к электронам настолько велико, что каждый атом наносимого металла ионизуется при ударе о поверхность и, если затем испаряется, то в виде иона . В таких случаях электростатическое притяжение ионизованных поверхностных атомов к противоположно заряженному подлежащему слою содействует адгезии этих атомов к металлу. Полная потеря валентных электронов электроположительным металлом не является, однако, обязательным условием его адсорбции уже одно только стремление этих электронов перейти на атомы подлежащего металла, без выхода за пределы сферы действия поверхностных атомов, создаёт двойной слой, обращённый положительной частью наружу. Энергетические соотношения, определяющие полный или частичный переход валентных электронов в вольфрам, были рассмотрены де-Боэром и Гар-неем. Во всяком случае, можно с уверенностью утверждать, что низкий ионизационный потенциал первого валентного электрона в адсорбируемом металле содействует адсорбции, равно как и большая работа выхода подлежащего металла. На торированных вольфрамовых нитях цезий адсорбируется гораздо слабее, чем на чистых. [c.407]

    Фторид цезия содержит самый электроположительный металл и самый электроотрицательный неметалл. Сродство неметалла к электрону (99 ккал/мол) больше потенциала ионизации металла (89 ккал мол), так что даже на больших межъядерйых расстояниях ионная структура Сз Р более [c.52]


Смотреть страницы где упоминается термин Цезий сродство к электрону: [c.82]    [c.51]    [c.263]    [c.173]    [c.141]    [c.450]    [c.673]    [c.178]    [c.173]    [c.539]    [c.111]    [c.167]    [c.141]   
Основы общей химии Том 2 Издание 3 (1973) -- [ c.217 ]




ПОИСК





Смотрите так же термины и статьи:

Сродство

Сродство к электрону

Цезий

Цезий цезий



© 2025 chem21.info Реклама на сайте