Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цезий электронное строение

    Составить электронные схемы строения атомов калия и цезия. Какой из этих элементов является более сильным восстановителем Почему  [c.263]

    Атомы элементов первой группы на валентной оболочке имеют по одному электрону. Это и определяет их общие свойства. В соединениях эти элементы образуют только положительно заряженные ионы и являются типичными металлами. Наряду с одинаковым строением внешнего электронного слоя предпоследний слой у атомов отдельных элементов построен различно у одной группы элементов в нем находится по 8, у другой — по 18 электронов. Такое различие в строении предпоследнего электронного слоя оказывает большое влияние на свойства элементов и лежит в основе деления их на две подгруппы. К главной подгруппе I группы периодической системы относятся литий, натрий, калий, рубидий, цезий и франций. В предпоследнем слое у них находится по [c.387]


    Д. И. Менделеев, открывший объективный закон природы, не имел возможности вскрыть причины периодического изменения свойств элементов. Причины периодичности в изменении свойств элементов были раскрыты только с помощью теории строения атома. Эта теория показала, что в ходе развития электронных оболочек атомов (стр. 45) периодически повторяются одинаковые конфигурации внешних электронов, от которых более всего зависят химические свойства. Таким образом, периодическое изменение свойств элементов является следствием периодического возвращения электронных оболочек атомов к одним и тем же конфигурациям электронов внешнего слоя. Например, свойства самых активных щелочных металлов периодически повторяются у лития, натрия, калия, рубидия, цезия и франция потому именно, что в наружном слое их атомов периодически повторяется одноэлектронная конфигурация. Подобно этому свойства наиболее активных неметаллов — галогенов — периодически повторяются у фтора, хлора, брома, йода и астата, так как атомы их имеют по семь электронов во внешнем слое. [c.79]

    Размещение лантаноидов по группам, сделанное на основании их электронного строения, т. е. по сумме /-, d-, s-электронов вне устойчивых конфигураций, представлено в табл. 3. Цезий, имеющий один электрон на 6 -уровне, относится к I группе, барий с двумя электронами на этом же уровне — ко второй, а лантан (d s ) — к третьей. Церий с двумя электронами на внутренней незаполненной 4/-оболочке и двумя электронами на внешней б8-оболочке является элементом IV группы, празеодим (4/ 6s ) — элементом V группы, неодим (4/ 6s ) — VI группы, прометий (4/ 6s ) — [c.18]

    Строение электронных оболочек лития, рубидия и цезия следующее литий — 2, 1 рубидий — 2, 8, 18, 8, 1 цезий — 2, 8, 18, 18, 8, 1. В связи с таким строением электронных оболочек все три элемента обладают только одной валентностью — они всегда одновалентны. [c.458]

    Заполнение 4/ -оболочки оказывает весьма существенное влияние на строение электронных оболочек, атомные радиусы и физико-химические свойства металлов, следующих за лантаноидами (гафний, тантал, рений, вольфрам и т. д.), т. е. лантаноидное сжатие проявляется и за лантаноидами. Действительно, оно приводит, например, к тому, что металлический и ионный радиусы, возрастающие от титана к цирконию, от ванадия к ниобию и от хрома к молибдену, почти не изменяются при переходе к гафнию, танталу, вольфраму. Точно так же почти не увеличиваются металлические радиусы и ионные радиусы, отвечающие высшим валентным состояниям, при переходе от элементов ряда технеций—палладий к их аналогам рению—платине соответственно. Именно лантаноидное сжатие, происходящее в результате заполнения 4/ -оболочки, приводит к сближению свойств 5d- и 4с -переходных металлов, резко отличающихся по свойствам от более легких Зй-переходных металлов. Оно проявляется и на теплотах образования ионных соединений этих металлов и других химических характеристиках (см. главу II). Лантаноидное сжатие, а также заполнение 5й -оболочки, заканчивающееся у платины—золота, приводит к дополнительному сжатию внешних оболочек у последующих элементов ряда золото—радон, что отражается на возрастании ионизационных потенциалов последующих элементов. Вследствие этого потенциалы ионизации франция, радия, актиния оказываются соответственно выше потенциалов ионизации цезия, бария и лантана (см. рис. 6). В результате этого первые более тяжелые элементы оказываются менее электроположительными, чем последние. Сжатие внешних оболочек вследствие заполнения внутренних Af - и 5й -оболочек приводит к повышению энергии связи внешних электронов актиноидов по сравнению с их аналогами — лантаноидами. На это указывают данные, правда, пока довольно ограниченные по их потенциалам ионизации и имеющиеся уже более подробные сведения об их атомных радиусах (см. главу III). [c.51]


    ВЫСОКИМ ДАВЛЕНИЕМ ОБРАБОТКА материалов — обработка материалов воздействием высокого статического или импульсного давления. В пром. масштабах используется с 50-х гг. 20 в. Сопровождается обычно обратимыми или необратимыми изменениями электронного строения, кристаллической структуры и св-в материалов. Часто сочетается с магн., температурным или др. воздействием. Обусловлена сжимаемостью, или объемной упругостью веществ. Поскольку с повышением давления сжимаемость вещества уменьшается, сужается и полоса значеню сжимаемости различных элементов. Так, при давлении 1 бар сжимаемость цезия в 310 раз больше сжимаемости алмаза, а при давлении 30 кбар — только в 36 раз. Если давление составляет 100 кбар, изменяется и расположение элементов на кривой сжимаемости — максимумы их сжимаемости смещаются вправо на единицу в атомном номере. При более высоких давлениях (порядка [c.221]

    Однако положительные однозарядные ионы этих элементов, в виде которых все они (кроме водорода) большей частью содержатся в соединениях, различаются по числу электронов на внешнем уровне. Ион водорода Н представляет собой ядро атома, полностью лишенное электронной оболочки ион лития имеет два электрона, ионы натрия, калия, рубидия, цезия и франция содержат на внешнем уровне по 8 электронов, а однозарядные ионы меди, серебра и золота — по 18 электронов. Различия в строении электронной оболочки ионов являются одной из причин значительного отличия свойств меди, серебра и золота (и их соединений) от свойств остальных элементов первой группы (и их соединений). [c.48]

    Такие физические свойства металлов, как удельный вес, температура плавления и кипения, твердость, зависят от индивидуальных особенностей атомов отдельных элементов их массы, заряда ядра, строения внутренних электронных слоев и т. п. Эти свойства для различных металлов часто колеблются в широких интервалах. Так, температура плавления наиболее тугоплавкого металла вольфрама равна 3410° С, цезия около 28° С, а ртуть при обычных условиях находится в л<идком состоянии. [c.235]

    Плавление не сопровождается изменением заряда 1-Ь ионов щелочных металлов, и они сохраняют внешние р -оболочки и в жидком состоянии. Поэтому плавление не приводит к полному разрушению ортогонально направленных связей, обусловленных обменным взаимодействием внешних р -оболочек, и жидкие щелочные металлы сохраняют ближний порядок, свойственный их ОЦК кристаллическим структурам. Координационные числа жидких щелочных металлов близки к 8 (табл. 41), а межатомные расстояния мало отличаются от таковых для кристаллических структур вблизи температур плавления. Структура жидких рубидия и цезия была предсказана нами на основании анализа их электронного строения [162, 212] до того, как ее определили экспериментально 1213]. [c.243]

    В частности, лантаноидное сжатие приводит к усилению связи внешних электронов у последующих элементов, т. е. усилению их неметаллических свойств. В периодической системе элементов эти отклонения свойств, обусловленные лантаноидным сжатием, должны быть отражены некоторым сдвигом франция, радия, актиния и всех актиноидов относительно цезия, бария и лантаноидов. Такое уточнение таблицы представлено на рис. 12. Оно существенно, с одной стороны, для оценки строения и свойств этих тяжелых, малоисследованных элементов, а с другой — позволяет уточнить общие закономерности влияния заполнения внутренних оболочек на энергию связи внешних электронов, т. е. на характер экранирования ядра внутренними электронами. Отсюда непосредственно вытекает заключение [c.54]

    Решение. Строение электронных оболочек атомов натрия и цезия можно представить следующим образом  [c.60]

    При полном тождестве строения внешнего электронного слоя атомы элементов I группы по строению второго снаружи электронного слоя различаются между собой атомы натрия, калия, рубидия и цезия на предпоследнем электронном слое имеют 8 электронов (у лития—2), а атомы медн, серебра и золота на том же слое содержат по 18 электронов (см. таблицы в 5 и 6 настоящей главы). Это обстоятельство оказывает большое влияние на свойства элементов I группы и лежит в основе их деления на две подгруппы 1) главную—питий, натрий, калий, рубидий и цезий, и 2) побочную— медь, серебро и золото. [c.344]

    Который из щелочных металлов является более активным натрий ли калий литий или цезий Объясните это с точки зрения электронной теории строения атома. [c.170]

    Уже известный вам Дмитрий Иванович Менделеев установил, что если расположить химические элементы в порядке возрастания их атомного веса, то наблюдается интересная закономерность свойства химических элементов окажутся в периодической зависимости от их атомного веса. В то время Менделеев почти ничего не знал о вашем внутреннем строении. Ему не было известно, что именно те элементы, которые обладают близкими свойствами, имеют сходную электронную структуру. Иначе он легко пришел бы к выводу, что раз в строении электронного слоя наблюдается определенная периодичность, то она должна быть и в свойствах элементов. Но Менделеев открыл периодический закон, не зная строения атомов, и таким образом совершил научный подвиг. Он разместил все элементы в своей знаменитой периодической таблице. Эта таблица напоминает план нашего класса. Периодическая таблица Менделеева имеет восемь столбцов. Над первым Менделеев написал Первая группа — и поставил в ряд один под другим элементы от Водорода до Франция включительно (точнее, до Цезия, так как Франций в то время еще не был известен). [c.193]

    Исследования элементов при высоких давлениях, кардинальным образом изменяющих строение и степень перекрытия внешних электронных оболочек, привели к обнаружению неизвестных ранее модификаций рубидия, цезия, бария, галлия, индия, таллия, кремния, германия, олова, свинца, сурьмы, висмута, титана, циркония и других элементов. Круг полиморфных металлов расширился настолько, что можно полагать, что в природе вообще не существует элементов, сохраняющих одну и ту же структуру в достаточно широком диапазоне давлений и температур. [c.196]

    Из этой таблицы можно, в частности, видеть, что при одинаковом электронном строении анионы обладают большими размерами, чем катионы. Если взять ряд солей типа АБ, в которых анион Б остается неизменным, а размер катиона А последовательно увеличивается, то в таком ряду при достижении определенной величины отношения радиуса А к радиусу Б может произойти изменение структуры кристаллической решетки. Так, например, случае хлоридов щелочных металлов при достижении отношения радиуса катиона к радиусу аниона, равного 0,91, кристаллическая решетка типа Na l (в которой кристаллизуются хлориды лития, натрия и калия) ме1няется на тип s l (в которой кристаллизуется хлорид цезия). [c.14]

    По современным воззрениям, электронная струюура кристаллического атомного вещества представляет собой квантовую систему периодической структуры, электроны которой неразличимы и каждый из них взаимодействует сразу со всей системой в целом. Трехмерная непрерывная сеть межатомных связей в твердом теле периодического строения является системой волноводов для волн электронного газа, состоящего из валентных электронов, уровни энергии которых тесно сгруппированы в квазинепрерывные зоны. Наличие свободных, не связанных с определенными атомами, электронов, способных перемещаться по всему объему тела, определяет металлическое состояние этих веществ. Наиболее характерными представите- ями этого типа твердых веществ являются металлы. Обобществленные электроны, обеспечивающие металлическую связь в кристаллических твердых веществах, в отличие от электронов обычной ковалентной связи, существенно слабее связаны с определенным атомом. Поэтому работа выхода электрона, характеризующая прочность связи электронов со всей системой, для кристаллических атомных веществ имеет обычно малые значения. Так, для металлов значение ее лежит в пределах от 1,9 э6 для цезия, до 5,3 эб-для платины, тогда как потенциал ионизации для соединений с обычной кова- [c.109]


    С позиций теории строения атома легко объясняется и тот факт, что с ростом заряда ядра металлические свойства элементов в каждой группе возрастают, а неметаллические — убывают. Так, сравнивая распределение электронов по уровням в атомах фтора Р и иода I, можно отметить, что у них соответственно [Не 25 2р и [Kr]4ii "5s 5/7 т. е. по 7 электронов на внешнем уровне это указывает на сходство свойств. Однако внеи1ние электроны в атоме иода находятся дальше от ядра, чем в атоме фтора (у иода больший атомный радиус), и поэтому удерживаются слабее. По этой причине атомы иода могут отдавать электроны или, иными словами, проявлять металлические свойства, чего нельзя сказать о фторе. К аналогичному выводу о возрастании металлических свойств в группе с ростом заряда ядра приводит и сравнение, например, атомов элементов щелочных металлов лития и цезия Сз, в которых распределение электронов по уровням характеризуется, соответственно, формулами [Не]251 и [Хе]б5Ч Внешний электрон у цезия находится дальше от ядра, чем у лития (у Сз больший атомный радиус), а потому он удерживается слабее. [c.55]

    Атомы всех элементов, находящихся в первой группе, на внешнем энергетическом уровне имеют по одному электрону. Это и определяет их общие свойства. В соединениях эти элементы образуют только положительно заряженные ионы, так как они не обладают способностью ирисоединять электроны, а могут только их отдавать. Следовательно, все эти элементы являют( я типичными металлами. Наряду с одинаковым строением внешнего электронного слоя предпоследний слой у атомов отдельных элементов построен различно у одной группы элементов в нем находится по 8 электронов, у другой — по 18. Такое различие в строении предпоследнего электронного слоя оказывает большое влияние на свойства элементов и лежит в оспове деления их на две подгруппы. К главной подгруппе первой группы периодической систем],i относятся литий, натрий, калии, рубидий, цезий и франций. В предпоследнем слое у них находится по 8 электронов (у лития два). [c.242]

    Подобно тому, как в теории протолитического равновесия сопоставлялась сила анионов-оснований, считая, по Усановичу, каждый катион кислотой, можно составить и для этого типа кислот табель о рангах. Так, в ряду катионов щелочных металлов от лития к цезию сила кислот падает, так как с увеличением ионного радиуса уменьшается напряженность электростатического поля, создаваемого ионом, и, следовательно, ослабляется его стремление вступать во взаимодействие. Из двух катионов с одинаковым строением внешней электронной оболочки, например, и a +, последний более сильная кислота, чем ион калия, так как благодаря большему заряду иона, он будет обладать большей энергией взаимодействия с одними и теми же кислотами. [c.17]

    Подгруппа 1А. Главная подгруппа первой группы периодической системы включает так называемые щелочные металлы. Из них четыре элемента относятся к членам больших периодов калий, рубидий, цезий и один из крайне неустойчивых элементов — франции. Щелочными они называются потому, что их гидроксиды являются хорошо диссоциирующими сильными основаниями — щелочами. Близость физических и химических свойств их обусловлена сходным строением валентных и следующих за ними электронных уровней их атомов. Радиусы элементов подгруппы 1А самые боль-шие в периодах, а заряды ядер самые маленькие из всех членов данного периода, поэтому внешние электроны в атомах удерживаются слабо и легко отделяются (потенциалы ионизации невелики). Из приведенных в табл. 16 данных видно заметное различие характеристик элементов подгруппы 1А малых (1—3) и больших (4 — 7-го) периодов. Резкое возрастание радиусов атомов и ионов влечет за собой соответственно скачкообразное снижение энергии ионизации (см. табл. 10) (в среднем на 1 эВ). Это ведет к увеличению восстановительных свойств, проявляемых при реакциях, и повыше- [c.280]

    Так иногда называют натрий. Это не совсем справедливо в менделеевско таблице нарастание металлических свойств происходит по мере продвижения справа налево и сверху вниз. Так что у аналогов натрия по группе — франция, рубидия, цезия, калия — металлические свойства выражены сильнее, чем у натрия. (Конечно, имеются в виду только химические свойства.) Но и у натрия есть полный комплекс металлических химических свойств. Он легко отдает свои валентные электроны (по одному на ато.м), всегда проявляет валситность 1-Ь, обладает ярко выраженными восстановптелъными свойствами. Гидроокиси типичных металлов должны быть основаниями. Гвдроокись натрия NaOH — сильная щелочь. Все это объясняется строением атома натрия, на внешней оболочке которого только один электрон, и с ним атом легко расстается. [c.182]

    Согласно Дебуру, а также П. В. Тимофееву, развившему эту теорию далее, фотоэффект со сложных катодов обусловливается не выходом из катода электронов, поглотивших энергию светового кванта, а фотоионизацией атомов цезия, адсорбированных иа сравнительно толстом слое окиси цезия. Положение границы фотоэффекта и чувствительность сложного фотокатода зависят oi строения поверхности слоя окисла, от числа имеющихся на поверхности активных точек и от напряжённости молекулярного поля в этих точках. Электроны, эмиттируемые при фотоионизации адсорбированных атомов цезия, возмещаются за счёт электронов, приходящих из серебряной подкладки через промежуточный слой окисла. Поэтому на чувствительность сложного фотокатода влияет величина электропроводности промежуточного слоя. Электропроводность слоя в свою очередь зависит от состояния этого слоя, т. е. от наличия в нём посторонних и избыточных атомов. [c.78]

    Эти нарушения последовательности заполнения электронами оболочек повторяются и служат причиной образования побочных групп в периодической системе элементов. У цезия, например, даже начата постройка шестой оболочки, когда остается еще не начатой постройка четвертой (4/) и недостроепа пятая оболочка (5с/). Заполнение подгруппы 4/ происходит у элементов от Се до 1Ь, составляющих группу редкоземельных элементов, называемых л а н т а н и д а м и, которые благодаря сходству строения внешних электронных оболочек весьма мало различаются между собой по химическим свойствам. У группы элементов, называемых актинидами, наблюдается подобная же достройка 5/ подгруппы, располон ен-ной глубоко внутри атома. [c.15]


Смотреть страницы где упоминается термин Цезий электронное строение: [c.374]    [c.375]    [c.212]    [c.212]    [c.42]    [c.19]    [c.182]    [c.77]    [c.18]   
Основы общей химии Том 2 Издание 3 (1973) -- [ c.21 , c.89 , c.210 , c.210 , c.217 , c.227 ]




ПОИСК





Смотрите так же термины и статьи:

Цезий

Цезий цезий

Электронное строение

электронами электронное строение



© 2025 chem21.info Реклама на сайте