Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цезий системы s

    На рис. 48 представлены кинетические кривые роста цепи, вычисленные по экспериментальным значениям концевых групп, для полифосфатов натрия, таллия, цезия. Системы алгебраических уравнений, по которым определяются соответствующие константы, следующие  [c.194]

    Начало построения новых оболочек происходит в атомах элементов основной подгруппы первой группы периодической системы (водород, литий, натрий, калий, рубидий, цезий и франций). Единственный электрон, находящийся в наружной оболочке этих [c.35]

    У цезия начинается постройка шестой оболочки, хотя не только не образовался еще 5 -подуровень на пятой оболочке, но и на четвертой еще не начиналась постройка 4/-подуровня. Заполнение этого подуровня, находящегося уже глубоко внутри атома, происходит только у элементов от Се (2 = 58) до Ьи (2 = 71), составляющих группу редкоземельных элементов, или лантаноидов. Атомы этих элементов обладают аналогичной структурой двух наружных оболочек, но различаются по степени достройки внутренней (четвертой) оболочки. Эти элементы весьма мало различаются между собой по химическим свойствам, так как химические свойства определяются главным образом структурой наружных электронных оболочек. Подобный же случай встречается еще раз в седьмом периоде периодической системы. У элементов, следующих за актинием и называемых актиноидами, происходит достройка f подуровня пятой оболочки. [c.41]


    В таблице 8 приведены значения ЭО для всех элементов периодической системы элементов. Как видно из данных таблицы 8, наибольшей способностью притягивать электроны обладает фтор (ЭО== = 4,0), а наименьшей — цезий и франций (Э0 = 0,7). Важно подчеркнуть, что у элементов, расположенных в порядке возрастания атомного номера, значение ЭО изменяется периодически (табл. 8). [c.34]

    Главная подгруппа I группы периодической системы химических элементов Д. И. Менделеева, называемая также подгруппой щелочных металлов, включает литий Ы, натрий Ыа, калий К, рубидий КЬ, цезий Сз и франций Гг. Последний радиоактивен его единственный природный изотоп имеет период полураспада [c.142]

    В первую группу периодической системы входят типические элементы (литий, натрий), элементы подгруппы калия (калий, рубидий, цезий, франций) и элементы подгруппы меди (медь, серебро, золото). [c.587]

    Заметим, что в равновесной системе в силу соотнощений (5.9) не все компоненты системы являются независимыми. Под независимыми компонентами понимают совокупность наименьшего числа вешеств, присутствия которых необходимо и достаточно для образования всех возможных вешеств н фаз. В отсутствие в системе химических реакций каждое вещество является независимым. Условия (4.9) накладывают / связей на систему, и поэтому число независимых вешеств А цез меньше полного числа компонентов на /  [c.82]

    В главной подгруппе первой группы периодической системы находятся литий, натрий, калий, рубидий, цезий и франций В соответствии с номером группы в своих соединениях (в большинстве случаев ионных) они проявляют всегда степень окисления -Ы. Чисто ковалентное а—ст-связывание имеет место в газообразных молекулах Кза, Ка и т. д. Эти элементы — самые неблагородные . Их стандартные потенциалы порядка от —2,7 до —3,0 В (ср. табл. В.14). Ионные радиусы сопоставлены в табл. А.16. Обраш,ает на себя внимание тот факт, что при переходе от натрия к калию изменение радиусов оказывается, большим, чем в следующем за ними ряду элементов К—НЬ—Сз почему ). Это обстоятельство является главной причиной отличия свойств натрия от его более тяжелых аналогов. С учетом этого становится понятной аналогия в свойствах соответствующих соединений калия, рубидия и цезия. Особо следует под  [c.597]

    Точно так же периодическая система дала толчок к исправлению атомных масс некоторых элементов. Например, цезию раньше приписывали атомную массу 123,4. Менделеев же, располагая элементы в таблицу, нашел, что по своим свойствам цезий должен стоять в главной подгруппе первой группы под рубидием и потому будет иметь атомную массу около 130. Современные определения показывают, что атомная масса цезия равна 132,9054. [c.77]

    Килограмм равен массе международного прототипа килограмма Моль равен количеству вещества системы, содержащей столько же структурных элементов, сколько содержится атомов в 0,012 кг углерода-12 Секунда равна 9192631770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133 Кельвин равен 1/273,16 части термодинамической температуры тройной точки воды. Это наименование и его обозначение применяются также для выражения интервала и разности температур Ампер равен силе неизменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади сечения, расположенным в вакууме на расстоянии 1 м один от другого, вызвал бы на участке проводника длиной 1 м силу взаимодействия, равную 2-10 Н Ньютон равен силе, сообщающей телу массой 1 кг ускорение 1 м/с в направлении действия силы [c.477]


    Ог лития и натрия (типичных элементов), калия, рубидия, цезия и франция (электронных аналогов) берут свое начало малые и большие периоды системы элементов Д. И. Менделеева. [c.251]

    Рассматривая связь электроотрицательности с положением элемента в периодической системе, можно отметить некоторые закономерности. В горизонтальных направлениях периодической системы (по периодам) наблюдается увеличение электроотрицательности (особенно для элементов главных подгрупп). Например, электроотрицательность элементов второго периода увеличивается от 1,0 для лития до 4,0 для фтора электроотрицательность элементов третьего периода — от 0,9 для натрия до 3,0 для хлора. В вертикальных направлениях периодической системы (по подгруппам) наблюдается уменьшение электроотрицательности. Так, в подгруппе ш,елочных металлов электроотрицательность уменьшается от 1,0 для лития до 0,7 для цезия в подгруппе галогенов — от 4,0 для фтора до 2,2 для астата. [c.81]

    Если рассмотреть рассеяние пучка рентгеновских лучей от системы ионов цезия, находящихся в одной плоскости, то в соответствии с общими положениями оптики можно убедиться, что совпадение по [c.161]

    Например, в случае кристалла хлористого цезия пучок, соответствующий отражению от системы плоскостей, изображенных на рис. 65, [c.162]

    Заметим прежде всего, что ионы цезия находятся в системе параллельных плоскостей, отстоящих на равном расстоянии друг от друга. Эта система плоскостей выбирается различным образом. Можно провести эти плоскости так, чтобы они содержали грани элементарных ячеек (рис. 68, а) или диагонали граней элементарной ячейки (рис. 68,6). В зависимости от выбора системы плоскостей будет изменяться и расстояние й между плоскостями. В первом случае оно наибольщее и равно длине ребра элементарной ячейки, т. е. 0,411 нм. Во втором случае это расстояние составит 4,11 2= = 0,291 нм. [c.183]

    В главных подгруппах периодической системы восстановительная способность нейтральных атомов растет с увеличением порядкового номера. Так, в ряду —Сз, например, Ь проявляет восстановительные свойства гораздо слабее, чем другие элементы, а наиболее сильный восстановитель — Сз, если восстановительную способность характеризовать величиной потенциала ионизации. Но литий имеет более электроотрицательную величину стандартного электродного потенциала, чем цезий, и в ряду напряжений расположен выше его. [c.94]

    С этой точки зрения интересно рассмотреть зависимость некоторых свойств щелочных металлов от их положения в периодической системе. Наиболее легко будет отдавать свои валентные электроны цезий (он применяется в фотоэлементах), менее легко рубидий, затем калий, натрии и литий. Чем легче атомы каждого из этих металлов отдают свои электроны, тем больше в узлах кристаллической решетки будет возникать положительно заряженных ионов, которые отталкиваются (действие закона Кулона). Вследствие этого прочность решетки будет падать, металл становится мягче, и тем- [c.97]

    Элементы главной подгруппы I группы периодической системы элементов Д. И. Менделеева — литий, натрий, калий, рубидий, цезий и франций — называются щелочными металлами. [c.223]

    Элементы литий Ы, натрий Ма, калий К, рубидий КЬ, цезий Сз и франций Рг составляют 1А группу Периодической системы Д. И. Менделеева. Франций — радиоактивный элемент, его наиболее долгоживущий изотоп з зрг имеет период полураспада, равный 22 мин. Групповое название элементов 1А 1 руппы — щелочные металлы. [c.195]

    Атомы, вступающие в химическую связь, могут отвечать одинаковой или разной электроотрицательности элементов, т.е. способности удерживать около себя электроны (см. Приложение 2). Неметаллы обладают высокой электроотрицательностью, металлы низкой электроотрицательностью. В каждом периоде Периодической системы электроотрицательность элементов увеличивается при возрастании порядкового номера (слева направо), в каждой группе Периодической системы электроотрицательность уменьшается при возрастании порядкового номера (сверху вниз). Элемент фтор F обладает наивысшей, а элемент цезий s-наи-низшей электроотрицательностью среди элементов 1-6-го периодов. [c.42]

    VI-1-6. Бромид цезия кристаллизуется в кубической системе. [c.56]

    Д-р Гладстон сделал замечание по поводу того, что в таблице не оставлено свободных мест для новых элементов. За последние четыре года были открыты таллий, индий, цезий и рубидий, и теперь открытие очередного элемента заставит отказаться от всей системы Ньюлендса. Оратор придает аналогаи, существующей между металлами, помещенными в последнюю вертикальную колонку, не меньшее значение, чем аналогии между элементами, стоящими в одной горизонтальной линии. [c.326]

    За единицу времени в системе СИ принята секунда (с). Секунду определяют как интервал времени 9 192 631 770 периодов излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133 при длине волны, равной приблизительно 3,26 см. Прежде секунду определяли как 1/86 400 часть средних со.пнечных суток. [c.5]

    Димеризация пропилена при л 210°С в присутствии калия или цезия привела к 4-метилпентену-1 в качестве основного изомера [8]. Димеризация протекала через первоначальное образование калийорганического соединения и последующее металлиро-вание пропилена. При димеризации пропилена в проточной системе в присутствии графита или карбоната калия с нанесенными на них калием или натрием под давлением при 150 °С выход димера был значителен, а в результате сополимеризации этилена с пропиленом под действием присутствующих щелочных металлов с выходом 92% были получены пентены [9]. [c.165]

    По современным воззрениям, электронная струюура кристаллического атомного вещества представляет собой квантовую систему периодической структуры, электроны которой неразличимы и каждый из них взаимодействует сразу со всей системой в целом. Трехмерная непрерывная сеть межатомных связей в твердом теле периодического строения является системой волноводов для волн электронного газа, состоящего из валентных электронов, уровни энергии которых тесно сгруппированы в квазинепрерывные зоны. Наличие свободных, не связанных с определенными атомами, электронов, способных перемещаться по всему объему тела, определяет металлическое состояние этих веществ. Наиболее характерными представите- ями этого типа твердых веществ являются металлы. Обобществленные электроны, обеспечивающие металлическую связь в кристаллических твердых веществах, в отличие от электронов обычной ковалентной связи, существенно слабее связаны с определенным атомом. Поэтому работа выхода электрона, характеризующая прочность связи электронов со всей системой, для кристаллических атомных веществ имеет обычно малые значения. Так, для металлов значение ее лежит в пределах от 1,9 э6 для цезия, до 5,3 эб-для платины, тогда как потенциал ионизации для соединений с обычной кова- [c.109]

    Диалогичным образом ведет себя кислород. При его адсорбции на цезии при температуре —180°С фотоэлектрический ток сначала растет, затем проходит через максимум и, наконец, если происходит непрерывная подача кислорода, падает до нуля [161], Здесь, по-видимому, происходит то же самое, чтоивслучае системы калий—атомарный водород ири комнатной температуре. При —180° С атомы цезия обладают достаточной подвижностью, чтобы мигрировать поверх первого слоя поверхностного окисла, после чего они в свою оче )едь окисляются, Конечным состоянием при —180°С при условии непрерывной подачи кисочорода является, по-видимому, бимолекулярный слой окиси цезия, расположенный поверх металлического цезия. Этот слой защищает металл от дальнейшего окисления. [c.104]


    В соответствии со сказанным, самыми сильными восстановителями являются элементы, находящиеся в начале каждого периода и в конце I главной подгруппы (элементы цезий 55Сз, франций ваРг)- Их атомы имеют самые низкие значения энергии ионизации. Самыми сильными окислителями являются элементы, располагающиеся в правом верхнем углу таблицы периодической системы (фтор, кислород, хлор). Атомы этих элементов обладают наивысшими значениями сродства к электрону. [c.85]

    РУБИДИЙ (Rubidium, название от характерных линий спектра, лат. rubidus — темно-красный) Rb — химический элемент I группы 5-го периода периодической системы элементов Д. И. Менделеева, п. н. 37, ат. м. 85,4678. Природный Р. состоит из двух изотопов, один из которых радиоактивен. Известны 16 искусственных радиоактивных изотонон. Р. открыт в 1861 г. Р. Бунзеном и Г. Кирхгофом спектральным анализом минеральных вод. Получают Р. вместе с цезием из карналлита и лепидолита. Самостоятельных минералов не имеет. Р.— мягкий серебристо-белый металл, химически активен, самовоспламеняется на воздухе, с водой и кислотами взаимодействует со взрывом. В соединениях Р. одновалентен. Среди солей Р. важнейшие галогениды, сульфат, карбонат и некоторые др. Р. применяют для изготовления фотоэлементов, газосветных трубок, сплавов, в которых Р. является газопоглотителем, для удаления следов воздуха из вакуумных ламп соединения Р. применяют в медицине, в аналитической химии и др. [c.216]

    ФРАНЦИЙ (Fran ium, в честь Франции) Fr — радиоактивный химический элемент I группы 7-го периода периодической системы элементов Д. И. Менделеева, п. н. 87, массовое число самого долгоживущего изотопа 223. Стабильных изотопов не имеет. Известны 9 радиоактивных изотопов. Единственный изотоп, встречающийся в природе (Т,1 = 21 мин), открыт в 1939 г. М. Пере как продукт а-распада As. В химическом отношении Ф.— типичный щелочной металл, аналог цезия. [c.269]

    В системе Сз+ сорбция ионов цезия еще меньше, чем в предыдущих системах при обмене в том же ряду безводных спиртов. Снижение диэлектри- [c.367]

    Цезий. Цезий является щелочным металлом и находится в I группе шестого периода периодической системы элемегггов Д. И. Менделеева. В нормальных условиях иезий имеет кубическую объемно центрированную структуру с параметром а = 0,614 нм. Изучение цезия под давлением показало крайне своеобразное поведение этого элемента в зависимости от давления и температуры фазовая диаграмма Сз представлена на рис. 42. [c.152]

    К щелочным металлам относятся литий, натрий, калий, )убидий, цезий и франций. В периодической системе, ],. И. Менделеева они расположены в главной подгруппе группы. Атомы щелочных элементов имеют на внешнем электронном слое по одному электрону, который при химических реакциях легко теряют по схеме [c.262]

    Другой пример закономерного изменения диаграмм состояния дают системы 5сСЬ-МС1 (М-и, Ыа, К, ЯЬ, Сз). При переходе от лития к цези р происходит закономерное изменение типа и характера диаграммы, в частности увеличивается число компонентов, расширяется область концентраций, в которой кристаллизуются бинарные соединения, повышается их устойчивость. [c.314]

    На рис. 59 приведены значения электроотрицательности различных элементов по Полингу, который рекомендовал другой способ определения этих величин (см. стр. 211). Электроотрицательиость фтора в системе Полинга условно принята равной 4. Не совсем обычная форма чертежа продиктована желанием придать графику облик периодической системы. Как и следовало ожидать, наибольшее значение X имеет фтор, наименьшее — цезий водород Зганимает промежуточное положение, т. е, при взаимодействии о одними элементами (например, с Р) он отдает электрон, при взаимодействии с другими (например, е КЬ) — приобретает электрон. [c.133]

    Таким образом, к наиболее электроотрицательным элементам относится фтор, находяпшйся в верхнем правом углу таблицы, а к наименее электроотрицательным — цезий, расположенный в левом нижнем углу периодической системы. Чем дальше отстоят два элемента один от другого по шкале электроотрицательности, тем больше смещено электронное облако к наиболее электроотрицательному элементу, тем большего дипольного момента следует ожидать для химической связи, образуемой этими элементами. [c.81]

    Заметим прежде всего, что ионы цезия находятся в системе параллельных плоскостей, отстоящих на равном расстоянии друг от друга. Эта система плоскосюй выбирается различным образом. Можно провести эти плоскости так, чтобы они содержали грани элементарных ячеек (ри . 65, а) или диагонали граней элементарной ячейки (рис. 65, б). В зависимости от выбора системы плоскостей будет изменяться и расстояние 4 между плоскостями. В первом случае оно на- [c.160]

Рис. 65. Система плоскостей, содержащих ионы цезия в кристаллической решетке s l (ионы хлора не показаны) (а) и система плоскостей (в разрезе), содержащая ионы цезия и проходящая через диагонали граней элементарных ячеек хлористого цезия (б) Рис. 65. Система плоскостей, содержащих ионы цезия в кристаллической решетке s l (ионы хлора не показаны) (а) и система плоскостей (в разрезе), содержащая ионы цезия и проходящая через диагонали граней элементарных ячеек хлористого цезия (б)
    Ионы хлора образуют решетку, идентичную решетке, образуемой ионами цезия. Поэтому отражения от плоскостей, содержащих ионы хлора, возможны точно под теми же углами, что и от плоскостей, содержащих ионы цезия. В рассматриваемом случае плоскости ионов хлора располагаются точно посередине между плоскостями ионов цезия, и расстояние между этими плоскостями составляет dl2. Поэтому волны, отраженные от плоскости ионов хлора, будут смещены по сравнению с волнами, отраженными от соседней плоскости ионов цезия на величину i/sinS. При нечетных п эти волны смещены на половину волны и гасят друг друга. Однако в силу различий в амплитуде колебаний рассеяния (она существенно меньше для менее интенсивно рассеивающих ионов хлора) гашение будет неполное, т. е. рефлексы наблюдаются. При четных п волны, рассеянные от обеих плоскостей, совпадают по фазе, и рассеяние от ионов хлора будет несколько усиливать рассеяние от ионов цезия. Следовательно, рассеяние от системы плоскостей, содержащих грани элементарной ячейки, более интенсивно под углами 22 и 43,52 , чем под тремя остальными углами. Расстояние от системы плоскостей, содержащих диагонали граней элементарной ячейки, под углом 31,95° существенно сильнее, чем под углами 15,34 и 52,54°. Следовательно, распределение интенсивности между рефлексами содержит информацию о распределении атомов в пределах элементарной ячейки, т. е. о структуре частиц, составляющих ячейку. [c.163]

    Рис, 68. Система параллельных плоскостей с иоиами цезия в кристаллической решетке СзС1 (ионы хлора не показаны) а — содержащая грани элементарных ячеек б — содержащая диагонали граней элементарных ячеек [c.182]

    Если рассмотреть рассеяние пучка рентгеновских лучей от системы ионов цезия, находящихся в одной плоскости, то в соответствии с общими положениями оптики можно убедиться, что совпадение по фазе во фронте рассеянной волны будет лишь в случае, если оно наблюдается в направлении под углом, равным углу падения исходного пучка на плоскость. Иными словами, интенсивное рассеяние от каждой плоскости по отдельности происходит лишь под углом, соответствующим отраженной электромагнитной волне. Действительно (рис. 69), нетрудно видеть, что две волны, находящиеся в фазе во фронте падающей волны и рассеянные соответственно атомами А и В, расположенными на расстоянии d друг от друга, пройдут разное расстояние до точки формирования фронта рассеянной волны, а именно osб для волны, рассеянной атомом А, и d ose для волны, рассеянной атомом В. При несовпадении угла падения 0 и угла рассеяния 0 волны будут смещены по фазе, и так как рассеянный пучок формируется из огромного числа рассеянных волн с самыми разнообразными сдвигами по фазе, то будут наблюдаться интерференция и гашение рассеянных волн во всех направлениях, не соответствующих углу отражения. [c.183]

    Например, в случае кристалла хлорида цезия пучок, соответствующих отражению от системы плоскостей (см. рис. 68, а), расстояние между которыми равно 0,411 нм при длине волны рентгеновского излyLiet ия 0,154 нм (такое излучение испускается рентгеновской трубкой с медным анодом), будет наблюдаться при углах падения, удовлетворяющих условию [c.184]

    Ионы хлора образуют решетку, идентичную решетке, образуемой ионами цезия. Поэтому отражения от плоскостей, содержащих ионы хлора, возможны точно под теми же углами, что и от плоскостей, содержащих ионы цезия. В рассматриваемом случае плоскости ионов хлора располагаются точно посередине между плоскостями ионов цезия, и расстояние между этими плоскостями составляет //2. Поэтому волны, отраженные от плоскости ионов хлора, будут смещены по сравнению с волнами, отраженными от соседней плоскости ионов цезия, на величину 51п0. При нечетных п эти волны смещены на половину волны и гасят друг друга. Однако в силу различий в амплитуде колебаний рассеяния (она существенно меньше для менее интенсивно рассеивающих ионов хлора) гашение будет неполное, т. е. рефлексы наблюдаются. При четных п волны, рассеянные от обеих плоскостей, совпадают по фазе, и рассеяние от ионов хлора будет несколько усиливать рассеяние от ионов цезия. Следовательно, рассеяние от системы плоскостей, содержащих грани элементарной ячейки, более интенсивно под углами 22 и 48,52°, чем под тремя остальными углами. Рассеивание от системы плоскостей, содержащих диагонали граней элементарной ячейки, под углом 31,95° существенно сильнее, чем под углами 15,34 и 52,54°. Следовательно, распределение интенсивности между рефлексами содержит информацию о распределении атомов в пределах элементарной ячейки, т. е. о структуре частиц, составляющих ячейку. Именно этим обстоятельством определяется возможность применения дифракции рентгеновского излучения для определения структуры молекул в кристаллах. Кристаллы, построенные из сложных молекул, дают очень сложную картину распределения интенсивностей отдельных рефлексов. Однако по ней можно полностью восстановить расположение отдельных атомов в элементарной ячейке и тем самым установить полную пространственную структуру молекул, из которых построен кристалл. Используя некоторые дополнительные приемы и применяя для расчетов быстродействующие электронно-вычислительные машины, удается получить пространственную структуру даже таких сложных молекул, как белки и нуклеиновые кислоты. [c.185]

    Щелочные металлы. Элементы литий натрий N 1, калий К, рубидий КЬ, цезий Сз и франций Рг составляют 1А-группу Рериодической системы. Групповое название этих элементов - гг/елочные металлы. [c.163]

    А-группу периодической системы элементов Менделеева составляют литий, натрий, калий, рубидий, цезий и франций. У атомов этих элементов на наружном уровне электронной оболочки находится по одному з-электрону. Ими начинаются 2—7-й периоды системы Менделеева. Бериллий, магний, кальций, стронций, барий и радий образуют ИА-группу. У атомов этих элементов на наружном уровне электронной оболочки содержится по два з-электрона. Таким образом, в атомах элементов этих групп валентными являются только 5-элек-троны. [c.33]


Смотреть страницы где упоминается термин Цезий системы s : [c.21]    [c.125]    [c.21]    [c.369]    [c.19]   
Основы общей химии Том 2 Издание 3 (1973) -- [ c.224 ]




ПОИСК





Смотрите так же термины и статьи:

Цезий

Цезий цезий



© 2025 chem21.info Реклама на сайте