Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрон правила отбора

    Существуют еще достаточно общие причины кажущихся нарушений электронных правил отбора. Во-первых, столкновения с другими атомами или молекулами либо влияние электрических или магнитных полей могут нарушать правила отбора, введенные для состояний невозмущенных частиц. Во-вторых, хотя переход может быть запрещен для дипольного взаимодействия, возможны магнитные дипольные или электрические квадрупольные переходы (более слабые). [c.42]

    ИК-Спектры и другие данные. Данные, полученные методом ИК-спект-роскопии для одноядерных карбонилов металлов в газовой фазе, хорошо согласуются с рентгенографическими данными и с данными но дифракции электронов. Правила отбора для соединений, относящихся к тетраэдрической и октаэдрической группам симметрии, предсказывают наличие одного валентного колебания связи С—О и одного валентного колебания связи металл — углерод, причем оба колебания активны в инфракрасном спектре. Для тригональной бипирамиды (пространственная группа О следует ожидать появления активных в инфракрасном спектре двух валентных колебаний связи С—О [c.45]


    Переход между двумя уровнями возможен только при изменении электрического дипольного момента системы или ее квадрупольного и т. п. момента, магнитного момента, поляризуемости, а также при возбуждении молекулы ударом электрона, атома, иона. Каждому из перечисленных процессов соответствует своя величина р. Наиболее часто в формуле (43.6) величина р — электрический дипольный момент системы. Тогда величина У " " называется дипольным моментом перехода. В дальнейшем, где специально не оговаривается, речь будет идти именно о спектрах, связанных с электрическим дп-польным моментом перехода (спектры поглощения и испускания). Если дипольный момент перехода равен нулю, электрическое дипольное излучение или поглощение невозможно, соответствующий переход запрещен. Из (43.6) следуют так называемые правила отбора, позволяющие предсказывать невозможность тех или иных переходов. [c.144]

    Неупругие удары, называемые запрещенным переходом, могут быть и при столкновении фотона с электроном [1], когда атом задерживается в возбужденном состоянии значительно больше времени. Запрещенные переходы имеют место при условии, когда никакие правила отбора не соблюдаются. Если правило отбора соблюдается, электрон, сталкивающийся с фотоном переходит на другую энергетическую ступень атома с излучением или поглощением фотона за время 10 сек. [c.32]

    Каковы правила отбора для переходов между зеемановскими уровнями по электронному и ядерному спиновым квантовым числам в системах с электрон-ядерным сверхтонким взаимодействием  [c.86]

    Величина Rii, определяет правила отбора и непосредственно связана с электронными переходами. Ее единица измерения соответствует произведению единиц измерений моментов, т. е. Ы=Кл-м и ц ]=А-м2 = = Кл-м -с- , поэтому [Rik] = = Кл2-м -с .  [c.178]

    Отнесение полос поглощения с использованием КД. В связи с различием правил отбора в электронных спектрах поглощения и, например, в спектрах кругового дихроизма можно провести отнесение электронных переходов при использовании данных обоих [c.208]

    При переходе соблюдаются правила отбора, подобные упомянутым ранее, а в результате возникают полосатые спектры типа (см. рис. 1.22, б), располагающиеся, как правило, в видимой и ультрафиолетовой областях. Такие спектры следует называть электронно-колебательно-вращательными или сокращенно просто электронными. Таким образом, если в атоме данный электронный переход дает в спектре единственную линию, то в молекуле единственному электронному переходу может соответствовать множество линий, группирующихся в полосы. [c.253]

    Между различными уровнями электрона в магнитном поле возможны оптические переходы. Так как правило отбора разрушает переходы, при которых ДМ = то [c.532]

    Наиболее легко возбуждаются линии с низким потенциалом возбуждения. Они обычно имеют наибольшую интенсивность, так как соответствующие им переходы электрона будут совершаться наиболее часто. Однако, несмотря на низкий потенциал возбуждения, некоторые линии в спектрах отсутствуют или имеют очень маленькую интенсивность. Такие линии являются запрещенными. Установлены специальные правила отбора, которые позволяют легко найти запрещенные и разрешенные переходы электрона. Разрешенными оказываются только те переходы, при которых квантовое число I меняется на единицу. Например, переход с 5-уровней на р, с р-уровней на 5 или й и т. д. Правила отбора объясняют отсутствие в спектре алюминия линии, соответствующей переходу с 4р на Зр и др. [c.39]

    В результате взаимодействия с ядерными спинами происходит дополнительное расщепление энергетических уровней, причем более низкоэнергетическими оказываются состояния с противоположными знаками электронного и ядерного спинов. Правила отбора [c.313]


    Правила отбора для многоэлектронного атома менее строги, чем в случае атомов с одним электроном (2.68). Наиболее жестким из них является требование (3.94). По мере увеличения спин-орбитального взаимодействия запрещенные правилами (3.95) и (3.96) электронные переходы могут появиться в спектрах атомов, однако обычно с весьма малой по сравнению с разрешенными переходами интенсивностью. [c.79]

    Вудворд и Хоффман сформулировали следующее обобщенное правило отбора для согласованных реакций перициклическая реакция разрешена по симметрии в основном электронном состоянии, если общее число [c.323]

    Классическая механика, действительно, оперирует со средними значениями квантовой механики, и при больших квантовых числах квантовые законы приближаются к классическим. Однако это достигается введением определенных ограничений или запретов (правила отбора). Так, гармонический осциллятор (электрон) согласно квантовым представлениям может находиться в различных дискретных состояниях и испускать определенный набор волн с различными частотами. Допустим, что квантовые числа осциллятора возрастают— соответственно уменьшается интервал между уровнями если наложить ограничение на переходы, потребовав, чтобы разрешенными были только переходы между соседними уровнями, то при больших квантовых числах осциллятор будет испускать излучение лишь одной частоты, т. е. будет вести себя как классический осциллятор. Поэтому правила отбора по существу представляют собой мост между классической и квантовой механикой. [c.50]

    Электроны обладают как спиновым, так и орбитальным моментами. Обе величины являются векторами и обозначаются 5 и I. Полные моменты атома получаются в результате векторного сложения величин 5 и I каждого электрона, и этот процесс называют связыванием моментов. Связывание спиновых моментов уже вводилось при описании полного спина 8 атома или молекулы. В рамках простой схемы связывания моментов, известной как связь Рассела — Саундерса, суммирование отдельных спиновых моментов 5], 2 и т. д. дает полный спиновой момент 5, тогда как суммирование Ь, 1г и т. д. дает полный орбитальный момент Ь. Поскольку 8 и Ь сами являются моментами (векторными величинами), существует результирующий полный момент Л. Использование этого типа связи дает хорошие результаты для легких атомов, однако связь Рассела-Саундерса часто используется и для тяжелых элементов в этом случае нарушение правил отбора, основанных на 8, Ь и Л, отражает неадекватность такого описания (см. разд. 2.6). [c.36]

    Наиболее важным является правило, относящееся к спиновой мультиплетности при электронном переходе не происходит изменения спина. Обычно это правило отбора записывается следующим образом  [c.40]

    Правило отбора по спину (А8 = 0), казалось бы, должно быть универсальным, так как не учитывает симметричность рассматриваемой молекулы. Однако запрещенные по спину переходы часто наблюдаются на практике. Это правило отбора также основано на предположении о независимости волновых функций, а точнее, независимости спиновой и пространственной составляющих электронной волновой функции. Воздействие на электрон магнитного поля, возникающего при смешении относительно него (электрона) положительно заряженных ядер, приводит к смешиванию спиновой и орбитальной компонент, т. е. к спин-орбитальному взаимодействию. Таким образом, представление о чисто спиновых состояниях необходимо модифицировать, вводя обмен спинового момента с орбитальным. Например, состояние, формально описываемое как синг-летное, может в действительности иметь некоторые признаки триплетного, тогда как формальный триплет обладает некоторыми характеристиками синглета. Тогда переходы между синглетами и триплетами можно рассматривать как переходы между чисто синглетными и триплетными компонентами смешанных состояний. Поскольку спин-орбитальное взаимодействие связано с движением ядер, его величина резко возрастает с увеличением заряда ядра ( 2" ). Таким образом, в случае тяжелых ядер запрещенные по спину переходы проявляются сильнее. Хорошим примером является резонансное излучение ртути. (Термин резонансное излучение относится к испусканию при переходе с первого возбужденного состояния в основное резонансное поглощение и повторное излучение также могут наблюдаться в этом случае.) Основное состояние ртути — это 5о, а первый возбужденный синглет — Рь Переходы [c.41]

    Если электронно-колебательные или электронно-колебательновращательные взаимодействия не являются пренебрежимо малыми, то может происходить предиссоциация с нарушением электронных правил отбора. Ни в одном случае не было установлено точно, что предиссоциация становится возможной вследствие электронноколебательного взаимодействия. Однако имеется много примеров, когда предиссоциация становится возможной из-за взаимодействия вращательного движения с электронным. Такие случаи легко выявить по зависимости ширины линий от вращательных квантовых чисел. Для двухатомных и линейных многоатомных молекул правило отбора для такой гетерогенной предиссоциации записывается [c.186]

    На рис. 11,5/1, В и С представляют собой вибрационные уровни, соответствующие трем электронным состояниям молекулы. Квантовая механика показывает, что существует конечная вероятность перехода системы с какого-нибудь дискретного уровня системы термов В в область континуума системы термов А, или соответственно с дискретного уровня системы В в область континуума системы С, граничащую с этим уровнем. Переход с дискретного уровня одной системы уровней в сплошную область другой системы уровней возможен при выполнении правил отбора для электронных переходов (оба уровня должны обладать одинаковым значением полного квантового числа /, т. е. А/ = 0. Проекции орбитального момента количества движения электронов на линию, соединяющую ядра, должны отличаться не больше чем на единицу, т, е. ЛХ — 0 или 1, оба уровня должны принадлежать электронным состояниям одинаковой мультиплетности, т. е. Д5=0, они должны обладать одинаковой симметрией для отражения в начале координат. У молекул, состоящих из двух одинаковых ядер, оба уровня также должны обладать одинаковой симметрией в отношении ядер. Кроме [c.67]

    Важным примером запрещенного перехода является возбуждение на л -орбиталь несвязывающего 2р-электрона кислорода в молекулах, содержащих карбонильную группу (С=0). Это возбуждение принято называть п -> тс -переходом. Правила отбора, запрещающие этот переход, не являются вполне строгими, потому что в действительности для него все же наблюдается полоса поглощения. Но интенсивность такой полосы существенно уменьщена, так как она соответствует запрещенному переходу в такой ситуации е обычно принимает значения от 10 до 10 . [c.594]

    Если две s-мерные поверхности отвечают электронным функциям одинаковой симметрии, то при учете спин-орбитального взаимодействия эти поверхности пересекаются вдоль (s — 3)-мерной [И]еии. Для одной ил двух степеней свободы это означает невозможность пересечения термов. Ввиду того что вероятности переходов зависят не только от параметра Месси, но и от величины матричного элемепта взаимодействия, вызывающего неадиабатические переходы, важную роль в теории неадиабатических переходов играют правила отбора, устанавливающие общую связь типа неадиабатического взаимодействия с симметрией состояний, между которыми происходит переход. Использование этих правил отбора и другой специфики неадиабатического взаимодействия сравнительно небольшой протяженности области его локализации позволяет аппроксимировать адиабатические термы [c.54]


    Правило отбора при электронных переходах Ат/ = 0. Это зна- чнт, что за время электронного перехода не происходит изменения ориентации ядерн01 0 спина. Из рис. 83 видно, что в результате расщепления уровней вместо одной линии поглощения появляются две при иапряжениости внешнего поля Яо—ДЯ/ и Яо+ДЯ/. Расстояние между линиями в спектре а = 2ДЯ/ называется сверхтонким расщеплением и измеряется чаще всего в единицах напряженности магнитного поля, но может быть измерено также в единицах частоты  [c.239]

    Строгого правила отбора для До колебательных переходов, как и в оптической электронной спектроскопии, в фотоэлектронных спектрах нет, и часто наблюдается хорошо развитая колебательная структура полос. Она видна, например, на рис. 1.5, где приведен фотоэлектронный спектр бромоводорода. Соответствующий более низкому значению энергии I дублет интенсивных узких пиков без колебательной структуры относится к ионизации с несвязывающей орбитали Вг и обусловлен спин-орбитальной связью (см. гл. VI 2.2). Полоса при более высоких энергиях / относится к ионизации со связывающей орбитали и расстояния между пиками ее структуры соответствуют частоте валентного колебания v(H—Вг) ионизованной молекулы. В ФЭС также справедлив принцип Франка —Кон дон а, т. е. наиболее вероятны вертикальные переходы. [c.145]

    Правила отбора (см. ч. I, гл. XIII) запрещают электронные переходы между -уровнями свободного атома или иона, т. е. - -> -переходы, поскольку -АО имеют центр симметрии. В электронных спектрах центросимметричных ионов и молекул запрещены переходы типа и и- и, разрешены только переходы д и. [c.209]

    Молекулярные орбитали (МО) делятся на а-, я- и и-орбитали. <т-МО — симметричная относительно оси, связывающей атомы в молекуле. я-МО—несимметричная относительно оси молекулы п — несвязЫ вающая. Несвязывающая молекулярная орбиталь обычно наблюдается у тех молекул, у которых имеется сильно электроотрицательная группа атомов или атом. Энергия таких электронов близка к энергии соответствующей атомной орбитали. При поглощении молекулой кванта электромагнитного излучения происходит электронный переход со связывающей на незанятую разрыхляющую (а - или я -МО) или с несвязывающей на незанятую разрыхляющую (а - или я -МО) (рис. 14). Правило отбора соблюдается и в этом случае. [c.27]

    Симметрия. молекулярной орбитали во многом определяется симметрией равновесной конфигурации молекулы. Следовательно, от симметрии молекулы зависят правила отбора в спектрах поглощения и испускаш1я и распределение электронной плотности. Молекулы, обладающие центром симметрии (Д, <Х и др.), — неполярны, например Вер2 и, неполярны также молекулы высокой симметрии, хотя и не имеющие центра, симметрии, как, например, тетраэдрические СН4, СС1(4 и другие (3 ), плоские ВРз, А1Рз и другие (1>з ). Если равновесная конфигурация молекулы известна, то существование или отсутствие дипольного момента может быть точно предсказано на основании соображений симметрии при помощи теории групп. В свою очередь измерение дипольного момента может указать на геометрию равновес- [c.176]

    Наибольшим значениям молярных коэффициентов поглощения для разрешенных переходов соответствуют величины порядка е == 10 . Подобные интенсивные полосы всегда следует относить к синглетным переходам (переходы без изменения направления спина). Основное состояние почти всех органических соединений — син-глетное состояние, и вероятность изменения спина при возбуждении электронов очень мала. Переходы между электронными состояниями с одинаковой симметрией распределения заряда запрещены. Однако вследствие воздействия колебаний ядер распределение электронов в основном и возбужденном состояниях может изменяться. Это приводит к осуществлению слаборазрешенных переходов. Интенсивность полос поглощения, соответствующих запрещенным по симметрии переходам, мала (табл. 5.15). Точно так же запрещены переходы с изменением спина электрона. Тот факт, что, несмотря на эти правила отбора, подобные переходы все же можно наблюдать, объясняется сочетанием собственно синглет-ного и триплетного состояний. Однако переходы, запрещенные по спину, отличаются особенно низкой интенсивностью [58]. [c.230]

    Следует подчеркнуть малую интенсивность d— /-переходов в октаэдрических комплексах. В октаэдрическом окружении при наличии центра инверсии сохраняется правило отбора AL= 1 (см. разд. 3.9). Следовательно, d— /-переходы (AL = 0) запрещены по симметрии. Проявление полос /- -переходов обусловлено электронноколебательными взаимодействиями. В результате непрерывного колебательного движения атомов в молекулах некоторые из них (при не полностью симметричных колебаниях) в каждый определенный момент времени оказываются слабо искаженными по сравнению с идеальной октаэдрической геометрией. При таких искажениях становится возможным наблюдать слабоинтенсивные полосы поглощения формально запрещенных электронных переходов. [c.423]

    Рассмотрев все различные виды перициклических реакций как реакции циклоприсоединения (см. разд. 13.1), Вудворд и Хоффман сформулировали следующее обобщенное правило отбора для согласованных реакций перициклическая реакция разрешена по симметрии в основном электронном состоянии, если общее число (4 + 2) и (4 ) структурных компонент реакции нечетное. Для фотохимической реакции, разрешенной по симмегрии, общее число отмеченных компонент должно быть четным. [c.506]

    Для обозначения антисвязывающих или разрыхляющих орбита-лей используют обычно символы а, я, б и т. д. Четность и це-четность МО лежат в основе правил отбора разрешенных электронных переходов. Возможны переходы и о g и невозможны переходы и<-> U и g-M. g. [c.124]


Смотреть страницы где упоминается термин Электрон правила отбора: [c.29]    [c.102]    [c.593]    [c.88]    [c.166]    [c.166]    [c.183]    [c.57]    [c.141]    [c.141]    [c.32]   
Основы общей химии Том 2 Издание 3 (1973) -- [ c.228 ]




ПОИСК





Смотрите так же термины и статьи:

Правила отбора



© 2025 chem21.info Реклама на сайте