Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алюминий радиус

    По предложенной методике > была проведена обработка экспериментальных данных работы [17], где также была изучена адсорбция паров воды на сферических гранулах оксида алюминия радиуса / = 1,76Х X м. Опыты проводились при достаточно высокой скорости потока [c.56]

    С металлами литий образует интерметаллические соединения. С магнием, алюминием, цинком и с некоторыми другими металлами, кроме того, образует ограниченные твердые растворы. Заметно отличаясь атомным радиусом от остальных щелочных металлов, дает с ними эвтектические смеси. [c.486]


    Катализатор содержит никель или кобальт 0,5 мас.% щелочных металлов (в расчете на КаО) обладает высокой активностью. Катализатор может содержать металлы группы платины и промоторы бериллий и магний или элементы III—VII групп периодической таблицы с атомным числом менее 40. Носителем катализатора является окись алюминия со средним радиусом пор менее 500 А, содержащая около 5% окиси кремния [c.152]

    Для выделенных областей дискретизации строится функция распределения диаметра вторичных глобул Z>2i, числа вторичных глобул Nzi и числа первичных глобул во вторичных от радиуса пор г. В качестве примера на рис. 3.5. приведены результаты расчета характеристик строения двух образцов шарикового 7-оксида алюминия, синтезированных в лабораторных условиях. Найденные функции распределения экстраполируются на область изменения радиуса пор, не доступную для экспериментального определения, до выполнения следуюш,их условий а) равенства объема единичной гранулы катализатора (адсорбента) сумме плотного объема всех вторичных глобул и сформированных ими пор б) равенства плотного объема вторичной глобулы сумме плотного объема формирующих ее первичных глобул и сформированных ими пор (объем этих пор для всех областей дискретизации соответствует экспериментальному на начальном (левом) участке кривой распределения объема пор по радиусам либо уточняется путем экстраполяции). [c.146]

    Ион А1 +, обладая малым радиусом и большим зарядом, проявляет склонность к комплексообразованию у алюминия она больше, чем у магния (но меньше, чем у бора). Как и вообще для [c.338]

    С многоатомными спиртами очень устойчивые комплексы образует, как известно, трехвалентное железо, ион которого при небольшом радиусе имеет большой положительный заряд этот же ион является лучшим сокатализатором реакции гидрогеиолиза. Трехвалентный ион алюминия также служит активным сокатализатором гидрогеиолиза (см. табл. 3.2), но уступает иону железа (III) ввиду слишком малого диаметра (так же, как и ион Mg  [c.92]

    С высокоразвитой удельной поверхностью, устойчивой к спеканию. Развитую поверхность получить легче у тех окислов, катион которых имеет малый радиус и высокий заряд, а также имеющих характеристики, соответствующие коллоидным и стеклообразующим свойствам при очень малой растворимости в воде. Эта группа веществ используется в качестве основы носителя и для стабилизации активных фаз. Окислы алюминия являются наиболее распространенным веществом для приготовления носителей многих катализаторов. Тугоплавкие композиции, образованные двумя или более изоляторами, также эффективны, но в настоящее время за исключением цементов, их редко используют. [c.28]

    Магний и бериллий существенно различаются размерами атомов и ионов (например, радиусы ионов 68 + и Mg соответственно равны 0,34 и 0,78 А). От своего соседа по периоду — алюминия-—магний отличается меньшим числом валентных электронов и относительно большим размером атома. Поэтому способность магния образовывать ковалентную связь, по сравнению с Ве и А1, понижена. Напротив, для него более характерно образование ионной связи. В этом отношении он приближается к элементам подгруппы кальция. [c.570]

    Итак, молекулярные сита — это однороднопористые кристаллы, состоящие из двуокиси кремния, окиси алюминия и окислов одно-или двухвалентного металла природа последнего определяет радиус пор и, следовательно, сорбционные свойства цеолитов. Путем ионного обмена получают молекулярные сита с самыми различными размерами пор. [c.89]

    Во сколько раз изменится скорость всплывания шлака в стали, если в качестве раскислителя вместо кремния применять алюминий, а радиус частиц шлака увеличится в 1,4 раза Плотность стали 7600 кг/м , оксида алюминия 4000 кг/м , а оксида кремния 2400 кг/м . [c.26]


    Ионы обозначают теми же символами, что и атомы, указывая справа вверху их заряд, например, положительный трехзарядный ион алюминия обозначают А1 +, отрицательный однозарядный ион хлора — С1 . Для ионов, как и для атомов, существует несколько систем радиусов. На их размеры влияют такие факторы, как количество ближайших ионов в узлах кристаллической решетки (называемое координационным числом) и их электронное состояние (заряд, размер и др.). Поэтому наиболее индивидуальным радиусом иона так же, как и для атома, можно считать его орбитальный радиус. Потеря атомом электронов приводит к уменьшению его эффективных размеров, а присоединение избыточных электронов — к увеличению. Поэтому радиус положительно заряженного иона (катиона) всегда меньше, а радиус отрицательно заряженного иона (аниона) всегда больше радиуса соответствующего электронейтрального атома  [c.82]

    Одинаковое строение внешней электронной оболочки атома бора и алюминия обусловливает сходство в свойствах этих элементов. Так, для алюминия, как и для бора, характерна только степень окисления +3. Однако при переходе от бора к алюминию сильно возрастает радиус атома (от 91 до 143 пм) и, кроме того, появляется еще один промежуточный восьмиэлектронный слой, экранирующий ядро. Все это приводит к ослаблению связи внешних электронов с ядром и к уменьшению энергии ионизации атома (см. табл. 15.2). Поэтому у алюминия металлические свойства выражены гораздо сильнее, чем у бора. Тем не менее химические связи, образуемые алюминием с другими элементами, имеют в основном ковалентный характер. [c.400]

    Атомы элементов третьей группы являются электронными аналогами, так как все они имеют одинаковое строение внешнего уровня s p (и одинаковое число электронов на нем). Металлические свойства у них выражены слабее, чем у элементов I и II главной подгрупп, а у бора, характеризующегося малым радиусом и наличием двух квантовых слоев, преобладают неметаллические свойства. За исключением неметалла бора, все они могут находиться в водных растворах в виде гидратированных положительно трехзарядных ионов. В этой подгруппе, как и в других, с увеличением порядкового номера металлические свойства сверху вниз усиливаются. Бор является кислотообразующим элементом оксиды и гидроксиды алюминия, галлия и индия обладают амфо-терными свойствами, а оксид таллия имеет основной характер. [c.78]

    Отношение ионных радиусов катиона (Са , А1 +, 51 +) и аниона 02- составляет соответственно 0,765, 0,415 и 0,387, поэтому катион кальция в соединениях имеет координационное число 6 и выше. Координационное число кремния, как правило, равно 4, а алюминия— 4 и выше. [c.12]

    Меньше всего радиуе у ионов 31 ", близок к нему радиус ионов АГ , поэтому в кремнекислородном тетраэдре ионы кремния могут быть замеш ены только на ионы алюминия. Радиусы остальных ионов больше, и они не помещаются в тетраэдрическом промежутке между четырьмя ионами кислорода. В алюмогидроксильных Октаэдрах промежуток между шестью гидроксилами больше, следовательно, в октаэдрах ионы АГ могут быть заменены рядом других ионов, например ионами Ге ", Mg , Ь , радиусы которых близки к радиусу АГ ". Радиусы ионов натрия, калия, кальция значительно больше, чем радиусы ионов алюминия или магния. Они не могут замещать АГ в октаэдре и тем более 81 в тетраэдре, так как не жбме стятся в октаэдрическом и особенно в тетраэдрическом промежутке. У минералов группы монтмориллонита отрицательный заряд пакета создается в результате замещения части ионов 31 на АГ в двух кремнекислородных тетраэдрических слоях [c.115]

    Кристаллогидраты. Кристаллизационная вода является необходимым компонентом кристаллической решетки гидратов. При удалении кристаллизационной воды решетка разрушается и кристалл превращается в порошок. Выше было показано (стр. 128), что тип кристаллической решетки ионных кристаллов или точнее координационное число ионов определяется отношением радиусов катиона и аниона Гц/Га. Когда это отношение имеет большую величину, координационные числа ионов равны 6 или 8 в этом случае возникают октаэдрические или кубические расположения ионов и нет необходимости в кристаллизационной воде. К таким веществам относятся, например, кристаллы галогенидов щелочных металлов — Na l, sl и др. Если радиус катиона мал по сравнению с радиусом аниона, подобная кристаллическая структура невозможна. Так, для хлорида алюминия (радиус иона АР+ равен 0,50 А, а радиус хлор-иона С1 —1,81 А) отношение радиусов равно лишь 0,28, и поэтому у него была бы возможна только тетраэдрическая координация. Но, так как в нее не вместились бы все хлор-ионы С1 , кристалл безводного хлорида алюминия имеет слоистое строение (см. стр. 569). При соприкосновении с водой эта решетка разрушается, и образуется хлорид гексааквоалюминия [А1(НгО)в] +ЗС1". Радиус иона гексааквоалюминия равен 3,3 А, так что этот ион может соприкасаться с 12 хлор-ионами С1 и, следовательно, образовывать устойчивую решетку. [c.335]

    В целом с ростом порядкового номера металлические свойства элементов ША-группы усиливаются. Однако различие в структуре предвнешних оболочек обусловливает немонотонное изменение металлических свойств элементов в этой группе. От бора к алюминию радиус атома значительно возрастает, и металлические свойства резко увеличиваются. [c.311]

    У бериллия (ls 2s ) по сравнению с бором ( s 2s 2p ) в соответствии с увеличением радиуса атома и уменьшением числа валентных электронов неметаллические признаки проявляются слабее, а металлические усиливаются. Бериллий обладает более высокими энергиями ионизации атома (II = 9,32 эВ, /а == 18,21 эВ), чем остальные s-элементы II группы. В то же время он во многом сходен с алюминием (диагональное сходство в периодической системе) и является типичным амфотерным эле.ментом в обычных условиях он простых ионов не образует для него характерны комплексные ионы как катионного, так и анионного типа. Во всех устойчивых соединениях степень окисления бериллия -f2. Для Ве (II) наиболее характерно координационное число 4 (зр -гибри-Д1(зация валентных орбиталей). [c.470]

    Магний заметно отличается от бериллия размерами атома и нона (радиусы ионов Ве + и Mg + соответственрю равны 0,034 и 0,078 нм). От своего соседа по периоду — алюминия — магний отличается меньшим числом валентных электронов и относительно большим размером атома. Таким образом, у магния металлические признаки проявляются сильнее, чем у бериллия и алюминия. В частности, для магния менее характерно образование ковалентной связи, чем для бериллия и алюминия, и более характерно образование ионной связи. В этом отношении он ближе к типичным металлическим элементам — элементам подгруппы кальция. [c.476]

    В начальной стадии активации содержание натрия в составе катализатора уменьшается до минимального значения (от 3,5 до 0,2%), происходит значительное улучшение физических свойств катализатора эффективности, объема и радиуса пор, удельной поверхности, объема пор монослоя, пористости, первоначальной активности и паротермостабильности (термостабильность катализатора увеличивается сильнее паростабильности). Дальнейшее увеличение количества активирующего раствора сернокислого алюминия хотя и снижает содержание натрия, однако отрицательно влияет на [c.95]


    С кислотами NH3 образует соли аммония, содержащие ион NH4. Это кристаллические вещества. Большинство их, подобно солям щелочных металлов, хорошо растворимо в воде. Многие из, них изоморфны. этим солям. Сходство данных соединений на одном, примере иллюстрирует рис. 3.46 оно в значительной степени обусловлено близостью радиусов ионов для NH< г= 143 пм, а для К" " г =133 пм. Однако проявляется саоеобразие катиона NH — его вытесняет любой щелочной металл (по шкале ср° нейтральный аммоний NHil расположен между марганцем и алюминием), при этом происходит разложение аммония NH4 на NH3 и На (однако растворенный в ртути NH некоторое время может существовать в виде амальгамы при низкой температуре). Соли аммония термически неустойчивы, а также подвергаются гидролизу по катиону. [c.399]

    Хром (И]) проявляет сходство с алюминием, что обусловлено близостью радиусов их ионов. Это проявляется в сходстве Э2О3 (твердость, амфотерность), в амфотерности Э(ОН)з, в полной гид-ролизуемосги ЭгЗз и Э2(СОз)з. [c.534]

    Методика расчета коэффициентов диффузии по формуле (2.1.91) была использована при обработке экспериментальных данных, представленных Л. Маркуссен в работе [17], В этой работе проводились экспериментальное и теоретическое исследования по адсорбции паров воды из потока воздуха сферическими гранулами оксида алюминия при различных скоростях потока и температурах. Прежде всего приведем пример расчета коэффициента диффузии на основе экспериментальных данных работы [17]. Кинетические кривые снимались при начальной концентрации адсорбата Са = 0,00342 кг/м скорости потока w — 11,3 м/с, радиусе сферических гранул адсорбента R = = 1,63-10- м, Моо = 0,0642 кг/кг. Равновесие хорошо описывается изотермой Фрейндлиха с показателем 1/т = 0,4906. Результаты эксперимента приведены в табл. 2.6 там же указаны значения вспомогательных величин /(y), рассчитанные по формуле (2.1.90), где я = 0,6737 получено по формуле (2.1.52). На рис. 2.9 экспериментальные данные представлены в координатах s/tKVR ) - f (Y). Хорошо ВИДНО, что точки группируются около не-которой прямой. Угловой коэффициент этой прямой равен и находится из уравнения (2,1.91). [c.54]

    На основании принципов структурного и энергетического соответствия мультиплетной теории катализа в реакциях гидрирования карбонилсодержащих соединений, в частности моносахаридов, показана высокая активность катализаторов рутений на угле [38]. и на окиси алюминия [39]. Принцип структурного соответствия (два атома молекулы налагаются на два атома металла-катализатора с учетом сохранения валентного угла) позволял ожидать максимума активности в ряду металлов-катализаторов гидрирования, расположенных по величине их наименьших атомных радиусов. Соответствующий расчет показывает, что из трудно растворимых в кислотах металлов (процесс гидролитического гидрирования, для которого подбирался высокоактивный гидрирующий катализатор, протекает в кислой среде) для гидрирования связи С = 0 ближе всего подходит рутений. Высокая активность рутения в отношении гидрирования связи С = 0 подтверждена и энергетическим соответствием мультиплетной теории. [c.43]

    Активными компонентами катализаторов для прямого гидрообессеривания нефтяных остатков служат Ni, Со, Мо и W носителями— окиси алюминия и кремния, природные и синтетические алюмосиликаты. Носитель играет важную роль в механизме отложения кокса и металлов на поверхности катализатора. С увеличением активной поверхности, объема и радиуса пор гидрообессеривание улучшается, однако высокопористые катализаторы малопрочны. Интересны сообщения [153, 154] о том, что можно рассматривать как гидрирующий катализатор. Автор утверждает, что при щелочной обработке такой окиси алюминия образуются активные центры двух типов активный железный центр, вызывающий диссоциацию молекулы водорода окисноалю-миниевый центр (вероятно, льюисовская кислота), который может адсорбировать ненасыщенные углеводороды. Процесс гидрирования, по-видимому, протекает с переносом водорода между указанными центрами. [c.255]

    Окись алюминия (активнгш) представляет собой у-моди-фикацию (радиус пор от 2.5 до 5.5 нм). Каждый грамм активной окиси алюминия имеет около 370 м поглощающей поверхности. Наибольшую механическую прочность имеет активная окись алюминия, изготовленная в виде стержней диаметром 3-6 мм и длиной 10-25 мм, либо в виде зерен. [c.60]

    Рабочий интервал значений pH прц определении фторида находится в области pH 4,5—12 для 10 —10 М фторида, а для меньших концентраций фторида — в области pH 4,5—8. Положительный дрейф потенциала обусловлен протонизацией фторида с образованием НР и НЬ 2 . В щелочных растворах происходит отрицательное отклонение потенциала вследствие замещения ионов фторида в кристаллической решетке ЬаРз ионами гидроксила, так как величины их ионных радиусов близки. Эти помехи в случае необходимости можно устранить, используя специальные буферные смеси, например буфер регулирования общей ионной силы (БРОИС) с pH 5,0—5,5, содержащий 0,25 М СНзСООН 0,75 М СНзСООЫа 1,0 М КаС1 и 10 3 М цитрата натрия (для маскирования железа и алюминия). [c.121]

    По сравнению с бромом у бериллия (в соответствии с увеличением радиуса атома и уменьшением числа валентных электронов) признаки неметаллического элемента проявляются меньше, а признаки металлического элемента усиливаются. Обладая более высокими энергиями иэнизацин атома (/i = 9,32 и /2=18,21 эв), бериллий заметно отличается ог остальных s-элементоз II группы, во многом сходен с алюминием (диагональное сходство в периодической системе) и является типичным амфотерным элементом. Следовательно, бериллий в обычных условиях простых ионов не образует для него характерны комплексные ионы как катионного, так и анионного типа. [c.564]

    Химия бериллия, соединения которого в основном ковалентны (разд. 36.7.2), очень напоминает химию алюминия (диагональное сходство)..С другой стороны, меньшие различия ионных радиусов кальция, стронция и бария очень часто обусловливают -общность реакций этих элементов. Меньший радиус иона Mg2+ -служит, например, причиной значительной растворимости сульфата (большая энергия гидратации иона Mg +), малой растворимости гидроксида (деформация поляризуемого иона ОН ) ж низкой температуры разложения карбоната магния по срав-ьяению с карбонатами кальция, стронция и бария (сильная де- [c.600]

    Кроме того, они образуют соединения, отвечающие степени окисления +2 и -ЬЗ. Соединения хрома (III) по свойствам во многом сходны с соединениями алюминия (III). Это объясняется тем, что радиусы ионов Сг + (0,63А) и AF+ (0.54А) близки. Гидроксид хрома Сг(ОН)з, как и А1(0Н)з, амфотерное соединение. В отличие от соединений алюминия соединения хрома (III) обладают восстановительными свойствами. Высшие оксиды рассматриваемых элементов ЭО3 и соответствующие им гидроксиды Н2ЭО4 обладают кислотными свойствами. Соединения хрома (VI) СгОз, Н2СГО4, Н2СГ2О7 и их соли — сильные окислители. [c.97]

    Па, а над каплями радиусом 0,01 мм давление паров выше на 0,3 Па по сравнению с давлением над плоской поверхностью воды. Кристаллический гидрат оксида алюминия АЬОз-ЗНгО [или А1(0Н)з] начинает терять воду при -f200° ,. а в очень мелкораздробленном состоянии — при 100°С. Золото п хлороводородной кислоте не растворяется, однако в высокодисперсном состоянии легко переходит в раствор. Растворимость СаЗОл в воде составляет 4,9моль/л, если же Са804 находится в виде частиц размером 2- 10 см, то растворимость, повышается до 15-10 моль/л. [c.143]

    Соединения хрома (III) по многим свойствам напоминают соединения алюминия. Это обусловлено тем, что соединения трехналентных алюминия и хрома имеют в основном ионное строение. Близость величины ионных радиусов А1 + и Сг + является причиной сходства свойств образуемых этими ионами соединений. [c.275]

    Ион Л) , имеющий малый радиус и большой заряд, проявляет склонность к комплексообразованию, причем у алюминия она больше, чем у магния (но меньше, чем у бора). Как и вообще для ионов t- и />-элемектов, для А1 характерно образование комплексов с Н О, 0Н , F , менее устойчивы комплексы с СГ Вг, Г. Однако Al , как все i- и р-элементы, не дает прочных комплексов с NH3 и его производными, СЫ и другими лигандами, образующими с ионами (/-элементов более устойчивые комплексы, чем гидратные и галогенидные. [c.352]

    Третья группа. Для элементов подгруппы бора (за исключением таллия) характерна степень окисления +3. Последней соответствуют соединения Э(ОН)з. Происходит дальнейшее ослабление (от I группы к И, от И к П1) основных свойств. Если LiOH—основание, а Ве(0Н)2 — амфотерное соединение, то В(ОН)з —кислота. Таким.образом, при переходе к третьей группе мы впервые встречаемся с элементом, образуюш,им кислоту (этим бор отличается и от всех элементов И1 группы), и с иэополикислотами, которые также характерны для бора. В соответствии с увеличением радиусов ионов элементов ВН ряду А1(0Н)з —Т1(ОН)д происходит усиление основных свойств. Если 6а(ОН)з отличается практически одинаковой степенью диссоциации с отщеплением ионов 0Н и Н+, то у 1п(0Н)з несколько преобладают основные свойства, а у Т1(0Н)з амфотерные свойства выражены очень слабо. Обращает на себя внимание очень медленное усиление основных свойств в этом ряду соединений. Это объясняется тем, что если атомы элементов третьей главной подгруппы являются электронными аналогами (их внешний электронный слой имеет строение s p), то ионы В + и А1 + сильно отличаются от Ga +, и ТР+. Первые имеют наружные оболочки атомов благородных газов, а вторые — 18-электронные оболочки, содержащие 10 d-электронов. Вследствие этого увеличение радиусов ионов после алюминия становится менее значительным, что и приводит к медленному усилению основного характера соединений. Здесь, так же как и в предыдущей группе, наблюдается диагональное сходство амфотерные гидроксиды А и Ве близки по свойствам. [c.91]

    Выше было рассмотрено увеличение адсорбции СО и углеводородов, в особенности полярных, при появлении в больших полостях цеолита типа X двухзарядных катионов в результате замещения ими ионов Na+. Рассмотрим теперь, как влияет на адсорбцию снижение концентрации щелочных катионов в цеолите, происходящее при уменьшении содержания алюминия (увеличении отношения Si/Al), т. е. при переходе от цеолитов X к цеолитам Y. Уменьшение содержания катионов при переходе от цеолитов X к цеолитам У вызывает ослабление электростатических взаимодействий и приводит к снижению адсорбции даже неполярных молекул, например пропана. Этот эффект наиболее значителен для Li-форм цеолитов, так как катионы Li, обладающие наименьшим радиусом, поляризуют молекулу пропана в наибольшей степени. Теплота адсорбции пропана в случае Na+ и К+-форм цеолитов X и У и Li-формы цеолита Y растет с увеличением л , поэтому изотермы адсорбции пропана для этих цеолитов вначале обращены выпуклостью к оси концентрации (давления) в газовой фазе и затем проходят точку перегиба. Только для цеолита LiNaX с наибольшей степенью обмена Na+ на Li+ (91%) изотерма адсорбции пропана обращена выпуклостью к оси адсорбции. В этом цеолите катионы Li+ занимают не только места 5п, но и места Sm на стенках больших полостей и сильно поляризуют молекулы адсорбата. [c.39]

    Благодаря своим малым размерам ион водорода Н+ в NaOH и Mg(0H)2 сильнее взаимодействует с кислородом, чем ион металла, несмотря даже на большой заряд у магния. Вследствие этого оба вещества диссоциируют как основания. В результате дальнейшего увеличения заряда и уменьшения радиуса атома при переходе к алюминию обе связи становятся близка по характеру, и А1(0Н)з является типичным амфотерным электролитом. Наконец, у последних четырех соединений вследствие еще большего увеличения заряда и уменьшения радиуса атомов заметно уменьшается прочность связи водорода с кислородом, и все они диссоциируют по кислотному типу. [c.388]


Смотреть страницы где упоминается термин Алюминий радиус: [c.108]    [c.152]    [c.146]    [c.56]    [c.56]    [c.136]    [c.227]    [c.228]    [c.62]    [c.63]   
Основы общей химии Том 3 (1970) -- [ c.262 ]




ПОИСК







© 2025 chem21.info Реклама на сайте