Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Железо энергетическое состояние

    Металлы — железо, кобальт, никель, гадолиний, диспрозий и некоторые из их сплавов и соединений являются ферромагнитными при температуре ниже критической для каждого соединения. Причина ферромагнетизма до объяснения ее квантовой механикой была неизвестна. Вопрос заключается в том, почему электроны на неполностью заполненных оболочках выстраиваются в направлении приложенного поля и почему они сохраняют эту ориентацию даже после снятия магнитного поля Объясняется это тем, что низшим энергетическим состоянием для некоторых твердых тел является состояние, в котором спины электронов параллельны, а не антипараллельны, как, например, для двух электронов в молекуле водорода. Ферромагнетизм возможен только при определенных межатомных расстояниях и определенных радиусах -орбиталей, поэтому он наблюдается лишь для некоторых элементов. Ферромагнитные вещества проявляют гистерезис в магнитных свойствах. Это означает, что магнитный момент зависит от магнитной предыстории образца кривые зависимости магнитного момента от напряженности магнитного поля различны для случаев, когда магнитное поле увеличивается или уменьшается. [c.497]


    Данная подгруппа состоит из элементов железа, рутения и осмия, атомы которых относятся к -типу. В связи с провалом одного з-электрона в атоме рутения число /-электронов у него на единицу больше, чем у атомов железа и осмия. Для последних электронная конфигурация валентных электронов а для атома рутения В атоме железа можно перевести в возбужденное состояние только один 5-электрон внешнего уровня на подуровень р, поэтому его валентность не может превышать 6 (по числу холостых электронов). Валентность же рутения и осмия может быть доведена до 8 за счет возбуждения парных электронов на более высокие энергетические подуровни. [c.345]

    Аналогичная гибридизация имеет место и у переходных элементов. При этом комбинируются 3d-, 4s- и 4/ -орбиты. Особый интерес представляет s/j d-гибридизация. Полинг показал, что при этом возникают шесть эквивалентных электронных тяжей, направленных, например, вдоль положительных и отрицательных направлений осей х, у, г (октаэдрическая гибридизация). Эти гибридизации привлекались для объяснения строения комплексных соединений типа ионов Fe ( N)s или Со (ЫНз)б . Атом железа имеет внешние электроны (3df (4s) . Ион Ре + имеет строение (3d)" (4s)Представляется энергетически выгодным возбудить три электрона из З -состояния в 4р-состояние. Тогда в возникшем ионе осуществляется состояние (МУ (4s) (4р) . Два /-электрона, один 4s и три 4р дают октаэдрическую гибридизацию, приводящую к шести сильным связям, компенсирующим энергию, затраченную иа возбуждение. [c.480]

    Обычно если -оболочка заполнена меньше чем наполовину, то состояние с минимальным значением / занимает самый низкий энергетический уровень. Если -оболочка заполнена более чем наполовину, то наблюдается обратный порядок заполнения энергетических уровней. Как видно из табл. 11-1, для ионов За ( группа железа ) в основном состоянии квантовые числа полного орбитального момента Ь принимают только три различных значения О, 2 и 3. Основные состояния ионов, соответствующие этим квантовым числам орбитального момента, обозначаются [c.278]

    При наличии жидкого состояния зоны технологического процесса наиболее эффективен автогенный технологический процесс, энергетика которого целиком определяется теплогенерацией при удалении некоторых ингредиентов сырьевых материалов. При производстве стали на воздушном дутье сведение теплового баланса ванны требует повышения содержания некоторых примесей в чугуне (кремний в бессемеровском процессе и фосфор-в томасовском). При производстве медных и никелевых штейнов тепловой баланс ванны обеспечивается, кроме серы, сжиганием железа, содержащегося в рудах цветных металлов. Поскольку доля железа в энергетическом балансе иногда достигает 30 7о и более, постольку можно, образно говоря, считать железо топливом цветной металлургии. [c.177]

    Примесь элементов, не принадлежащих к третьей и пятой группам, в кристаллах элементов четвертой группы дает более сложную картину. Как показывают опыт, а также качественное и теоретическое рассмотрение [61, присутствие атомов таких элементов, как золото, железо, медь и т. п., приводит к образованию нескольких энергетических уровней в запрещенной зоне. При этом некоторые энергетические состояния соответствуют донорам, а другие — акцепторам. [c.241]

    Согласно зонной теории [23, 24], электроны в металлах сохраняют в значительной степени те же характеристики, которые они имеют в изолированных атомах, хотя считается, что валентные электроны могут двигаться совершенно свободно через скопление положительно заряженных ядер и связанных с ними (плотных) электронных оболочек. Говорить о существовании 5-, р- и -электронов в твердом теле вполне законно, но тогда как в изолированных атомах каждое энергетическое состояние является дискретным и однозначным, в кристаллах металлов энергия каждого состояния имеет полосу (зону) разрешенных значений. Более того, число электронов, приходящихся на атом, расположенный в зоне металлического кристалла, может отличаться от числа электронов в соответствующих оболочках изолированных атомов. Например, электронная конфигурация 3(1- и 45-орбиталей изолированного атома железа имеет вид Зй 48 , тогда как в металлическом состоянии структура полосы в среднем выражается как Мы заме- [c.269]


    До сих пор, изучая свойства веществ и их превращения, мы учитывали массу реагирующих веществ, их энергетическое состояние и не касались вопроса о скорости реакций. Известно, как быстро сгорает спичка и как медленно ржавеет железо. Всякая химическая реакция протекает во времени, т. е. имеет определенную скорость. Реакция осуществляется только в результате столкновения частиц взаимодействующих веществ. Чем чаще столкновения, тем выше скорость реакции. Число столкновений, а следовательно, и скорость реакции зависят от концентрации веществ, т. е. от содержания их в единице объема. [c.77]

    Величина тока обмена для таких металлов, как железо, никель в растворах, содержащих собственные катионы, имеет порядок 10 —10 А/см2. Растворение металла из активного состояния приводит к выявлению граней с относительно плотной упаковкой атомов. Такая селективность растворения кристаллической решетки обусловлена тем, что атомы плоскостей с менее плотной упаковкой растворяются с большими скоростями вследствие того, что силы межатомной связи между ними в этом случае меньше, чем в плоскостях с плотной упаковкой. Естественно поэтому предположить, что характер растворения металла определяется тонким строением его кристаллической решетки, т. е. всей совокупностью структурных несовершенств кристаллической решетки, неоднородностью ее энергетического состояния. Такое влияние атомного строения на анодный процесс является, пожалуй, определяющим в развитии коррозии и особенно локальных коррозионных процессов. Развитие коррозионного процесса приводит к появлению на концевых ступеньках неполных атомных рядов активных частиц, обладающих гораздо более низкой свободной эне ргией активации растворения по сравнению с атомами, находящимися в нормальном положении. Это вызвано тем, что на концевых ступеньках неполных рядов, на неукомплектованных поверхностных плоскостях решетки содержатся атомы, менее прочно связанные с соседними атомами и более плотно окруженные молекулами растворителя. По оценке Т. П. Хора [74], плотность активных мест на поверхности металла достигает 10 —10 см . Эта величина составляет лишь небольшую часть от общего числа поверхностных узлов атомов (10 см 2). Эксперименты показывают, что свободная энергия активации растворения металла (без учета рассмотренного механизма растворения) может быть очень велика и, например, для отожженного и холоднодеформированного никеля достигает 10,6 ккал/моль [74]. [c.8]

    По мере уменьшения толшины слоев железа подавляются высокоэнергетические моды фононного спектра железа вблизи 35 мэВ и появляются новые энергетические состояния с меньшими энергиями, характерными для поверхности, что ведет к уменьшению величины вероятности эффекта Мессбауэра и силовых постоянных. [c.108]

    Снять спектры излучения радикала СМ и железа (см. с. 76). Определить волновые числа линий в пектре излучения СМ, которые соответствуют переходам 1—>-0, 2—>-1, О—>-() и 1 1 колебательную постоянную и ангармоничность для радикала, находящегося в электронно-возбужденном состоянии энергию химической связи в радикале в электронно-возбужденном состоянии. На основании полученных данных 78 вычертить кривую потенциальной энергии как функцию межъядерного расстояния (кривую Морзе). Для этого рассчитать минимальное и максимальное межъядерные расстояния в радикале СМ для энергетических уровней при у = 0, 5, 10 и 15 для нормального и электронно-возбужденного состояний. [c.79]

    Избыточная секреция инсулина поджелудочной железой способствует повышенной утилизации печенью глюкозы, находящейся в крови это приводит к гипогликемии. Кроме того, при высоком содержании инсулина происходит замедление катаболизма аминокислот и жирных кислот. Таким образом, в крови больных оказывается мало субстратов энергетического обмена, необходимых для образования АТР, Если состояние гиперинсулинизма продолжается долго, то возникает поражение клеток мозга, поскольку глюкоза служит для мозга основным источником энергии. [c.1000]

    Этим и объясняется то, что металлургия металлов, иными словами, извлечение их из руд, требует затраты большого количества энергии. В черной металлургии энергия, необходимая для выделения железа из окислов, получается при сжигании угля, в производстве алюминия такую роль играет электрическая энергия. В металлургии путем воздействия концентрированной энергии на соответственно подготовленную руду содержаш.иеся в ней элементы переводятся в энергетически более высокое и менее стабильное состояние, чем то, в котором они находились в руде. [c.249]

    Как мы видели в разделе 1 гл. IX, вследствие того что различные моменты — электрический дипольный, электрический квадрупольный, магнитный дипольный и т. д. — являются величинами типа F, единственными их матричными элементами, отличными от нуля, являются те, которые связывают состояния, относящиеся только к одному индивидуальному набору квантовых чисел. Поэтому в том приближении, в котором энергетический уровень считается связанным с одной конфигурацией задачи центрального поля, переходы с излучением происходят только между конфигурациями, отличающимися одной из пар значений п1. Такие переходы называются одноэлектронными. Однако во многих спектрах, особенно элементов группы железа, наблюдаются линии, отвечающие переходам, в которых изменяются два значения п1. Такие переходы известны как двухэлектронные. [c.360]

    Электронное строение комплексов железа(П). Основным состоянием конфигурации является Ф. Это единственное квинтетное состояние, так как высшие состояния представляют собой триплеты и синглеты. Следовательно, в слабом октаэдрическом поле лигандов основным состоянием будет а единственным возбужденным состоянием с такой же спиновой мультиплетностью также возникшее из Не исключено, однако, что в достаточно сильных полях синглетное состояние, образованное одним из возбужденных состояний свободного иона, окажется самым низким по энергии ц превратится в основное состояние. Эти особенности диаграммы энергетических уровней (а также некоторые другие особенности, которые будут рассмотрены позднее в связи с еще одним хорошо известным ионом Со ") можно проследить на рис. 29.Д.1. [c.270]

    Электронное строение комплексов железа(П1). Железо(1П) изоэлектронно марганцу(И), рассмотренному на стр. 253. Хотя диаграммы энергетических уровней Fe" и Мп" и идентичны [за исключением точных значений энергии состояний свободных ионов и несколько повышенных значений А в случае иона железа(1И) , все же о деталях спектра Fe" известно значительно меньше, чем о спектре Мп". Причиной этого является очень сильно выраженное стремление иона Fe + давать полосы переноса заряда в близкой ультрафиолетовой области, имеющие достаточно сильные крылья в области более низких энергий, т. е. в видимой области, которые почти полностью (а во многих случаях практически полностью) затемняют довольно слабые полосы, возникающие в результате запрещенных по спину d — d-переходов. Тем не менее, насколько удается установить, особенности спектра ионов железа(1И) в октаэдрическом поле находятся в согласии с предсказаниями теории. [c.276]

    Еще одним подтверждением того, что пассивная пленка железе содержит кислород в более высоком энергетическом состоянии, чем в любом из оксидов железа, служит ее способность (в отличие от активного железа) окислять хромиты СгОг до хроматов СГО4" в растворе НаОН [13]. [c.82]


    Чтобы понять механизм окисления, приходится изучать и по мере возможности предугадывать окислительные характеристики окисных слоев для всевозможных сочетаний металл — газ. Необходимо знать состав и структуру устойчивых соединений, образующихся при таком сочетании. Так как энергетическое состояние на поверхности раздела, равно как и на всякой поверхности вообще, отлично от энергетического состояния в толще материала, на подходящей поверхности могут образовываться металлические соединения, в обычных условиях неустойчивые в толще материала. Так, никель образует только один устойчивый окисел, а именно закись никеля N 6, но на поверхности окиси алюминия АЬОз возможно образование в значительном количестве и полуторной окиси никеля N 203 то же самое относится и к образованию двуокиси никеля N 02 на поверхности ТЮ2 [1]. В таких случаях структура образующихся окислов никеля псев доморфна структуре поверхности, на которой они образуются. Закись никеля N 0, которая, как известно, в нормальных условиях кристаллизуется только в решетке каменной соли, при образовании в виде слоя на поверхности икеля может приобрести ромбоэдрическую структуру [2]. Еще об одном экспериментальном факте, который можно увязать с влиянием поверхностной энергии, сообщает Гульбрансен [3]. Вюстит РеО, обычно неустойчивый при температурах ниже 570° С, образуется при окислении железа при этих температурах в виде тонкой пленки под окалиной, состоящей из окиси железа РегОз. Чем ниже температура образования такой пленки вюстита, тем меньше ее толщина, хотя пленку удавалось обнаруживать даже при 400° С. По уравнению [c.12]

    При определенных условиях наблюдается испускание и поглощение гамма-квантов атомными ядрами ряда более тяжелых элементов, начиная с железа, без заметного изменения их энергетического состояния за счет энергии отдачи. Последняя распределяется между всеми атомами твердого вещества и, таким образом, снижается до величины, значительно меньшей очень малой естественной ширины возбужденных уровней, составляющей всего 10-10—10- 5 величины энергии возбуждения, и это позволяет наблюдать резонанс излучателя и поглотителя гамма-квантов — эффект Мёссбауэра. Важно то, что резонансная энергия гамма-квантов зависит от состава и электронной конфигурации твердого вещества. Это позволяет более глубоко изучать природу твердого вещества, определять его электронную структуру, валентное состояние элементов, находящихся в составе данного вещества. Излучателем и поглотителем гамма-квантов при излучении мёссбау-эровских спектров служат вещества, содержащие атомные ядра одного и того же элемента (например, атомы в возбужден- [c.133]

    Из изотопов данных элементов отметим " Вг и радиоактивные изотопы иода. На изотопах Вг И. В. Курчатовым было открыто явление ядерной изомерии. Ядерными изомерами называются изотопы с одинаковым зарядом ядра, одинаковым массовым числом, одинаковым типом радиоактивного излучения, но с различными периодами полураспада. Энергетически ядра-изомеры неравноценны. Одно из ядер находится в нормальном энергетическом состоянии, а другое в возбужденном. Возбужденное ядро брома, прежде чем излучать электрон, излучает га ма-квант. Радиоактивный изотоп иода зЧ (Т.,, 8,08 дней) применяе в медицине при лечении заболе- ваний, связанных с нарушением нормальных функций щитовидной железы. Астат получается ядерной реакцией нзВ + о = - At + 3[о 1. Изотоп с массовым числом 210 наиболее устойчивый Ti/, = 8,3 ч. [c.597]

    Ценные сведения об энергетическом состоянии адсорбированных молекул дает ИК-опектроскопия [43, 44]. Примером может служить работа Блайхолдсра и Ричардсона [45] по адсорбции аммиака на активированной окиси железа. Авторы нашли, что при адсорбции полосы при 3,0 и 6,1 мкм слегка сдвигаются (3,1 и 6,3 мкм). При этом заметно меняется отношение интенсивностей этих полос. Если бы на поверхности происходило образование ионов аммония, то можно было бы ожидать появления полос при 3,4 и 6,9 мкм. Таким образом, основываясь на экспериментальных данных, можно предполагать, что аммиак адсорбируется не в виде ионов, хотя адсорбция, вероятно, сопровождается образованием водородных связей. Форма полос ИК-спектра показывает также, что молекулы адсорбированного аммиака утрачивают вращательные степени свободы. При совместной адсорбции воды и аммиака в спектре появляются характерные полосы понов аммония. На рис. XIП-7 приведены ИК-спектры поверхностей различных образцов кремнезема. Полосу при 3700 м в спектре высушенного кремнезема приписывают одиночным поверхностным гидроксильным группам. При гидратировании поверхности интенсивность широкой полосы нри 3400 см растет, и, следовательно, ее можно отнести к адсорбированным молекулам воды. [c.427]

    Для наблюдения резонанса достаточна скорость с — 10 мм/с. Отсюда видно, что с помощью эффекта Мессбауэра можно фиксировать весьма Т01 кне тг мснеиия в энергетическом состоянии ядер железа (АЕ/Е 10 ), возникающие из-за различного коорднпацноиного окружения атомов железа и различной энергии химической связи. [c.124]

    Протонированные формы аминов могут непосредственно участвовать в катодном процессе, ускоряя его [85]. Некоторые детали этого явления будут подробно рассмотрены ниже. Здесь же отметим, что ингибирование катодного выделения водорода за счет адсорбции амина и создания в кислых средах ионами аммония положительного фгпотенциала, а также ускорение процесса за счет каталитического разряда ионов водорода, входящих в состав RNH3, могут либо взаимно компенсироваться, либо приводить к эффектам торможения или стимулирования, как это следует из уравнения (4.19). Это зависит, в частности, от микроструктуры железа и сталей [95]. Микроструктура определяет энергетическое состояние поверхности и адсорбционную способность стали по отношению к частицам RNH2 и RNH3 [96]. Так, например, 96 [c.96]

    Представленная на рис. 176 корреляция свидетельствует о том, что влияние комплексообразования Ре2+ на константу скорости реакции Ре2+-ЬДФПГ обусловлено в основном изменением энергетического состояния ионов двухвалентного железа. [c.382]

    Резонансный обмен у-квантом между двумя однотипными ядрами возможен только при строгом соответствии их энергетических состояний. Если оно несколько нарущено, то обмен можно восстановить незначительным усилением или ослаблением У Кванта, сближая его источник (например, Ре ) с поглотителем (кристаллом, содержащим = Ре) или раздвигая их (рис. ХУ1-27). Необходимая для восстановления резонанса скорость перемещения (обычно порядка мм сек) и характеризует состояние - Ре в данном соединении относительно некоторого содержащего его эталонного вещества (например, металлического железа). Методом ЯГР довольно широко пользуются при попытках выяснения различных химических проблем. По нему имеются монографии ,  [c.556]

    Предполагаемые анодные реакции. В главе V было указано, что если металл был погружен в раствор хлористого натрия, то должны быть рассмотрены предполагаемые реакции. Если на мгновение мы исключим случаи, подобные свинцу в растворе сульфата свинца или серебру в растворе хлорида серебра, где могут образовываться пленки из плохо растворимых солей, то имеются две возможности 1) переход катионов в раствор с образованием раствора соли и 2) образование окисной пленки. В отсутствие внешней э. д. с. решение зависит главным образом от относительного падения свободной энергии и вообще кислая среда способствует образованию растворимой соли, в то время как слабо щелочная среда — образованию пленки на некоторых металлах нейтральные растворы сначала могут вызвать образование пленки, однако, повышение кислотности в местах, где искажается нормальное расположение атома.и где протекают анодные процессы, приводит к условиям, благоприятным для локального образования растворимой соли. Однако, когда потребляется ток от внешнего источника э. д. с. при примерно галь-ваностатических условиях (сила тока примерно постоянна во внешней цепи), то критерием не обязательно должна быть величина изменений свободной энергии. Если пропускаемый ток высок, то первое изменение может иметь место только в том случае, если обеспечивается переход в электролит в виде катионов необходимого числа атомов в соответствующем энергетическом состоянии. Таким образом, если при низких значениях пропускаемой силы тока выбор между двумя предполагаемыми реакциями может быть произведен на основе рассмотрения свободной энергии, то при высокой плотности тока появляется новый критерий, а именно, энергия активации для каждой реакции. Если последняя меньше при реакции образования пленки, чем при образовании растворимой соли, то мы можем наблюдать образование пленки, за которым следует выделение кислорода даже в условиях кислой среды — просто потому, что это единственный способ, по которому может быть использован пропускаемый ток. Железо, которое растворяется в разбавленной сер- [c.221]

    Если стальную пластинку, в которой углерод был распределен совершенно однородно, так что его концентрация по сечению пластинки и вдоль нее была одинакова, если эту стальную пластинку изогнуть в нагретом (до 500—600 °С) состоянии и подержать так некоторое время, то в верхней (растянутой) части пластинки углерода станет меньше, чем в нижней (сжатой), Таким образом, в однородном вначале образце в результате диффузии возникает разница концентраций. До некоторого предела вещество переносится диффузионным путем из области с меньшей в область с большей концентрацией. Вопреки всем диффузионным законам Только диффузия эта — не обычная, а происходит она в поле напряжений. Атом углерода — маленький по сравнению с атомом железа.. Энергетически выгоднее, чтобы маленьких атомов углерода было побольше в сжатой части пластинки, а больших атомов железа — в растянутой. Таким способом кристаллу удается снизить уровень напряжений. Кристалл платит за это тем, что разрешает веществу перемещаться в область, где его концентрация и так уж велика. Эффект так и называется восходящая диффузия (англичане говорят up-hill diffusion ) он был открыт около 50 лет назад советскими физиками А. А. Горским и С. Т. Конобеевским. [c.191]

    СОВ бипиридила и фенантролина с железом(1П), рутением(1П) и осми-ем(1П) были проанализированы с помощью энергетической диаграммы, аналогичной изображенной на рис. 13.15, на которой показано искажение, приводящее к состоянию более низкой энергии, чем состояние [c.239]

    Ядро Со за счет электронного захвата переходит в ядро Ее (Т, 2 для ядра " Ее составляет 0,1 мкс), при этом заселяется возбужденное состояние ядер железа. Для того чтобы исследовать энергетические уровни ядер Ре, образующихся при распаде ядер источника, испущенные 7-лучи могут поглощаться стандартным поглотителем, настроенным на одну энергию. В качестве источника готовится и используется кобальтовый-57 аналог исследуемого соединения. Из этого эксперимента получают [15] информацию о короткоживуших ком- [c.295]

    В гл. VI рассмотрено применение псевдоожиженного слоя в условиях конвективного режима, а также некоторые общие положения, касающиеся исевдоожижен-ного состояния сыпучих материалов. В условиях массообменного режима твердая сыпучая фаза содержит энергетические ингредиенты, а псевдоожижающая среда, обычно воздух, является реагентом-окислителем. О бразование а исевдоожижеин ом 1Слое Ж Идкой фазы приводит к нарушению работы слоя (при псевдоожижении газом), поэтому печи-теплогенераторы этого типа не используются как плавильные агрегаты. Рас-., смотрим на примере из цветной металлургии массообменный режим этого типа, где он используется при прел варитедьнпй обработке сырьевых териалов, со- . держащих серу и железо, т. е. примесей, удаление которых связано с генерацией тепла в размерах поряд ка 13600 кДж на 1 7775"1Щж на 1 кг — [c.168]

    Переход электронов с одного уровня на другой становится тем более вероятным, чем дальше от ядра расположены валентные электроны и чем энергетически ближе к основному состояния оказываются незанятые уровни. Этим объясняется ковалентность 6 у серы (ЗРв), 7 — у иода (1 ), 8 — у осмия (ОзРв) и отсутствие такой высокой ковалентности у кислорода, фтора, железа, аналогов серы, иода и осмия, расположенных в периодической системе элементов выше. Необходимость больших энергетических затрат на возбуждение атомов гелия, неона и аргона и невозможность их компенсации объясняют инертность этих элементов, хотя для их аналогов — криптона, ксенона и радона — получены соединения с ковалентностью 2, 4, 6 и 8 (1<гр2, Кгр4, Хер2, Хер4, ХеРе, ХеРа и др.). [c.112]

    При увеличении прочности стали проявление адсорбционного эффекта усиливается (Лобойко В.И. и др. [35, с. 21—25]). Особенностью сдвиговых процессов при адсорбционной усталости железа является почти мгновенное вступление в действие значительно большего, чем при испытании в воздухе, числа плоскостей скольжения, а также увеличение их ширины и плотности. Адсорбционное снижение поверхностной энергии дает возможность развиваться тем дефектам кристаллической решетки, которые при деформации металла в воздухе не в состоянии преодолеть энергетический барьер. [c.16]

    Рассмотрим в качестве примера два октаэдрических комплекса двухвалентного железа — Ре(Н20)й и Ге(СК)й . У свободного иона Ре " имеется шесть -электронов, другими словами, он представляет собой ион с -конфигурацией. В основном состоянии октаэдрического комплекса эти электроны можно разместить по имеющимся молекулярным орбиталям двумя различными способами, как это показано на рис. 23.15. Если энергетический интервал Л между несвязывающим и первым разрыхляющим энергетическими уровнями невелик, электроны распределятся по ним подобно тому, как это было в свободном катионе. Это означает, что электроны займут все пять орбиталей, располагаясь на них, насколько это возможно, поодиночке (см. рис. 23.15,й). При таком распределении электронов возникает всего одна электронная пара, которая занимает более низкий энергетический подуровень. В рассматриваемом случае энергия, необходимая для образования дополнительных электронных пар (т. е. для локализации двух электронов в одной и той же области пространства) на орбиталях нижнего электронного подуровня, превышает величину Д, и по этой причине образующийся комплекс чаще всего оказывается спин-свободным, или, что то же самое, высокоспиновым. Если же энергетический интервал Д превышает энергию спаривания электронов, минимальной энергии комплекса соответствует такое распределение электронов ио орбиталям, при котором они оказываются спаренными на нижнем энергетическом подуровне, что приводит к воз- [c.416]

    Если ядро обладает магнитным полем, наблюдается полное снятие спинового вырождения всех энергетических уровней ядра. Для железа это сверхтонкое магнитное взаимодействие приводит к расщеплению состояний с I, равным 7а и /г, соответственно на 4 и 2 подсостояния. При выполнении соответствующих правил отбора разрешены все 6 переходов, так что спектр должен состоять из 6 линий. Магнитное ноле может быть внутренним, как в случае ферромагнитных или антиферромаг-нитных веществ, или внешним. Наличие внутреннего магнитного поля предполагает магнитное упорядочение, зависящее от температуры и размера частиц. Например, антиферромагнитное упорядочение а-РегОз, проявляющееся в сверхтонком магнитном расщеплении мёссбауэровского спектра, происходит, только если диаметр частиц превышает 26 нм. Веществу с меньшими [c.436]

    Иначе говоря, при низких температурах пара Мп + А1 + + Ре2+ В энергетически более выгодна. Имеются данные 33], что при высоких температурах (порядка 1000° С и выше) ионы марганца и железа хаотически распределены по подрешеткам, причем, как показывают термодинамические расчеты [34], при 1200°С для МпРе204 75% ионов марганца находятся в двухвалентном состоянии. С понижением температуры проявляется энергетическая склонность ионов марганца и железа к определенным узлам решетки, причем ионы трехвалентного марганца имеют предпочтение к октаэдрическим узлам. [c.199]

    Способностью к свечению обладают тела во всех трех агрегатных состояниях. Для нас особое значение имеет фотолюминесценция минералов. Кристаллы, светящиеся продолжительное время, называются кристаллофоры или люминофоры. Люминесценция характеризуется спектром, выходом и длительностью. Спектр люминесценции кристаллов большей частью сплошной, специфичен для каждого минерала, он сдвинут по отношению к спектру поглощения в сторону длинных волн. Поглощая рентгеновские или ультрафиолетовые лучи, минерал дает видимое свечение преимущественно сине-зеленого цвета, часто очень продолжительное. Таким образом, минерал люминофор является своеобразным трансформатором и аккумулятором лучистой энергии. Выход излучения — отношение энергии излучения к энергии, затраченной на возбуждение свечения, — зависит от конституции минерала и может достигать 50—60%. В первом приближении энергетический выход люминесценции до известного предела растет пропорционально длине волны % возбуждающему излучению, а затем резко падает до нуля. Свечение в кристаллах возникает только при нарушениях структуры, что может произойти как в процессе роста, так и в дальнейшем. Примеси некоторых посторонних атомов в решетке минерала могут усиливать свечение (активаторы) или гасить его. Причем в одном случае атомы определенного химического элемента гасят свечение, а в другом те же атомы возбуждают его. Так, в сернистых соединениях цинка и кадмия примеси железа в количестве 10 % резко уменьшают яркость люминесценции, а в кальците атомы железа, наоборот, возбуждают свечение. Отбраковка исландского шпата для поляризаторов проводится в ультрафиолетовом свете, годными для изделий считаются индивиды кальцита, которые при этом не светятся. Иногда резко гаснет люминесцентное свечение в тонкокристаллических телах. [c.65]

    Таблица начинается водородом, основным состоянием которого является состояние 1 . Следуюш,ему элементу Не соответствует конфигурация 1 . Третий элемент Ы имеет основную конфигурацию 1 25. В соответствии с принципом Паули в состоянии может находиться не более двух электронов, поэтому третий электрон атома и занимает наинизшее свободное состояние 2 . С атома начинается заполнение состояний п==2. Затем идет Ве — конфигурация Начиная с В и вплоть до Ме заполняются состояния 2р. Начиная с На последовательно заполняются состояния с главным квантовым числом п==3, сначала 3 , а потом Зр-состояния. Так йродолжается вплоть до Аг, которому соответствует конфигу-i>щш 8 28 2р 38 3р . Затем процесс заполнения состояний с я = 3 временно прерывается. В атомах К и Са добавляемые электроны занимают не 3 /-состояния, а состояния 4 и 4 что оказывается Энергетически более выгодным. Атомом Са кончается заполнение Аервых главных групп периодической системы. К главным группам Относятся элементы, не содержаш,ие совсем й- и /-электронов или содержаш,ие заполненные й- или /-оболочки. Заполнение 3 /-состоя-ний начинается в элементах первой промежуточной группы, так называемой группы железа, 5с, Т1 и т. д. Этот процесс не так [c.53]

    Конфигурацией внешних электронов иона Ре + является 3 , а термом основного состояния В этом ионе градиент поля в области ядра в основном определяется шестым электроном, спин которого антипараллелен спину остальных пяти электронов. Решение вопроса о том, на какой орбитали будет находиться этот электрон, связано со степенью отклонения симметрии кристаллического поля от кубической. В полях аксиальной или ромбической симметрии снимается вырождение в пределах -яйг -групп орбиталей, и за счет спин-орбитального взаимодействия происходит дальнейшее расщепление энергетических уровней, показанное на рис. 23. Относительная заселенность этих уровней определяет температурную зависимость квадрупольного расщепления. Ковалентное взаимодействие понижает величину квадрупольного расщепления вследствие расширения радиальной части волновой З -функции. Исходя из температурной зависимости квадрупольного расщепления с учетом спин-орбитального взаимодействия и ковалентного характера связей, Инголлс [89] приближенно рассчитал разность энергий расщепленных А -орбиталей в полях аксиальной и ромбической симметрии, а также волновые функции основного состояния для некоторых соединений железа(И) полученные результаты представлены в табл. 8. [c.280]

    Измерения магнитной восприимчивости и спектров ЭПР — ценные методы обнаружения взаимодействий между ионами Ре(П1), однако они не дают сведений о геометрии комплексов, образуемых ионами Ре(П1) в состоянии А . Ранее уже было описано расщепление энергетических уровней пяти d-орбиталей под влиянием поля лигандов в комплексах октаэдрической, тетраэдрической и тетрагональной симметрии (рис. 54). Спектры поглощения необычных пентакоординационных соединений с основным состоянием S = = /з определяются интенсивным поглощением, которое, по всей вероятности, обусловлено переносом заряда, но переходы, определяемые полем лигандов, идентифицировать однозначно не удается [29]. Можно ожидать, что эти переходы будут по своей энергии и интенсивности сильно отличаться от переходов в октаэдрических и тетраэдрических комплексах. Хотя температурную зависимость магнитной восприимчивости в димерных системах Ре—О—Ре можно объяснить антиферромагнитным взаимодействием или между двумя спинами 5 = Vj, или между двумя спинами S = V-2 ионов в основном состоянии, основное состояние S = для комплексов октаэдрической и тетраэдрической симметрии исключается. С точки зрения изучения многоядерных железосодержащих белков интерес представляют только слабые лиганды, которые не могут привести к образованию иона в основном состоянии со спином S = /2. Поэтому в дальнейшем можно ограничиться обсуждением систем с основным состоянием 5 = Vg — единственным состоянием, которое позволило объяснить полосы поглощения, обусловленные полем лигандов, в наименьших многоядерных системах, образуемых железом, — в димерах Ре—О—Ре [40]. Сходство этих полос у мономерных и димерных шестикоординационных комплексов Ре(1И) согласуется с относительными величинами энергии антиферромагнитного спин-спинового взаимодействия (J 100 см" ) и переходов, обусловленных полем лигандов (J > 10 000 см ) Исходя из теории поля лигандов и простых электростатических соображений, можно ожидать, что поле, создаваемое четырь- [c.343]


Смотреть страницы где упоминается термин Железо энергетическое состояние: [c.122]    [c.76]    [c.29]    [c.364]    [c.312]    [c.138]    [c.206]    [c.203]    [c.711]    [c.16]    [c.26]   
Основы общей химии Том 3 (1970) -- [ c.240 ]




ПОИСК





Смотрите так же термины и статьи:

Состояние энергетическое



© 2025 chem21.info Реклама на сайте