Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Железо превращение

Рис. 235. Полиморфное превращение железа Рис. 235. Полиморфное превращение железа

    Жирные кислоты каталитическим процессом превращают в кетоны, которые каталитически восстанавливают, как указано выше. Низкомолекулярные жирные кислоты в кетоны целесообразно превращать в паровой фазе над катализатором на основе окиси тория. Для превращения же высокомолекулярных кислот, как миристиновая, пальмитиновая или стеариновая, целесообразно использовать метод получения кетонов по Грюну в присутствии железа в качестве катализатора. При этом достигаются хорошие выходы кетона, содержащего 2п—1 углеродных атома п — число углеродных атомов в исходной кислоте), и карбонильная группа всегда находится точно в середине цепи молекулы. Если же проводить реакцию кетонизации, исходя из карбоновых кислот, содержащих четное и нечетное числа атомов углерода, то образуются кетоны с несимметрично расположенной карбонильной группой  [c.61]

    Древние алхимики искали философский камень для превращения свинца или железа в золото, т. е. для трансмутации элементов. Стала ли трансмутация реалыюстью Из того, что вы знаете про ядерные превращения, скажите, как необходимо изменять свинец или железо, чтобы превратить их в золото  [c.335]

    Железо имеет четыре модификации (рис. 235). До 770 С устойчиво a-Fe с объемноцентрированной кубической решеткой и ферромагнитными свойствами. При 770 С a-Fe переходит в P-Fe у него исчезают ферромагнитные свойства и Железо становится парамагнитным, но кристаллическая структура его с/щественно не изменяется. При 912°С происходит полиморфное превращение, при котором изменяется структура кристалла из объемноцентрированной переходит в гранецентрированную кубическую структуру y-Fe, а металл остается парамагнитным. При 1394°С происходит новый полиморфный переход и сЗразуется б-Fe с объемноцентрированной кубической решеткой, которое существует вплоть до температуры плавления железа (1539°С). [c.582]

    В колонне находились змеевик для охлаждения, нагревательный змеевик и распределитель воздуха, изготовленные из хромоникелевой стали марки У2А. Степень превращения гача составляла 30%. Кислоты и другие продукты окисления, летучие в условиях работы, поступали в промывные скрубберы высотой 11 м, сделанные из железа и футерованные иенским стеклом, чтобы избежать коррозии [67], [c.453]

    Однако это определение не отвечает на вопрос о том, как отличить элемент, когда мы встречаемся с ним. Более практическое определение элемента принадлежит Роберту Бойлю (1627-1691) Элемент-это вещество, которое при химическом превращении всегда увеличивает свой вес . Это утверждение следует понимать в том смысле, которь[й ему приписывался. Например, при ржавлении железа образующийся оксид железа имеет больший вес, чем исходное железо. Однако вес железа и соединяющегося с ним кислорода точно равен весу образующегося оксида железа, И наоборот, когда мы нагреваем красный порошок оксида ртути, происходит выделение газообразного кислорода, а остающаяся серебристая жидкая ртуть имеет меньший вес, чем исходный красный порошок. Но если это разложение проводится в закрытой реторте, можно убедиться, что в процессе реакции не происходит изменения общего веса всех веществ, (Лишь спустя 100 лет после Бойля Лавуазье провел опыты с точным взвешиванием, продемонстрировав, что в подобных реакциях выполняется закон сохранения массы,) [c.270]

    Если ранее при стационарном катализаторе на 1 кг железа подвергалось превращению 0,5 м /час синтез-газа, то в случае суспендированного катализатора на 1 кг железа подвергается превращению 2,5— 4,5 газа, что составляет пяти-девятикратное увеличение скорости [c.119]

    Характер изменения температурной зависимости скорости окисления железа в области аллотропического превращения (см. рис. 85) указывает на то, что при высоких температурах более [c.138]


    Метастабильные состояния возникают как промежуточные при фазовых превращениях. Так, при быстром нагревании или охлаждении железа превращение происходит через е (ГПУ) [c.87]

    Следует особо остановиться на методе выделения и обработки печной сажи. Взвесь сажи отделяют от газов электростатическим осаждением в камере, снабженной двумя группами электродов, постоянная разность потенциалов между которыми 75 тыс. в. После этого продукты проходят три циклона, в которых механически отделяются крупные частицы. Последующие операции служат для превращения сажи в продукт большой плотности и твердости, для чего ее дробят в шаровой мельнице, гранулируют и отделяют окислы железа (при помощи магнитного поля). [c.125]

    Для превращения СО в СО2 процесс проводят при более низких (450—500 °С) температурах в присутствии катализатора, состоящего из смеси окислов железа, хрома и алюминия. Из 1 СН4 получают около 3,18 ж газа следующего состава (в объемн. %) 60,5 Н2 20,2 N3 4 СО 14,8 СО2 0,5 СН4. После удаления других компонентов получают смесь На и N3 с объемным соотношением компонентов, равным 3 1, которое и необходимо для синтеза аммиака. [c.214]

    Каталитический обрыв цепей в окисляющихся спиртах вызывают катионы кобальта, марганца, железа, меди [218]. Ароматические амины могут обрывать большое, но не бесконечное число цепей, вследствие параллельного протекания двух реакций— регенерации 1пН и необратимого превращения 1п- [168] [c.118]

    Реакция (657) в виде направленного электрохимического превращения может наблюдаться на пассивном железе только в нестационарные периоды слева направо после внезапного повышения потенциала и в обратном направлении — после его сброса. В стационарном состоянии единственным направленным переходом на границе пленка—раствор является реакция (658), которая не требует обязательного сопряженного удаления кислорода, поскольку возникающие катионные вакансии могут ликвидироваться за счет процессов миграции катионов через пленку. [c.308]

    Если, -наоборот, подкислять раствор щелочной соли иитропарафина, го происходит постепенное превращение ациформы в нейтральную форму. Этот процесс, как показал А. Голлеман [14], можно проследить измерением проводймости раствора. Псевдокислота ие дает цветной реакции с хлорным железом, тогда как ациформа вызывает тотчас же коричнево-красное окрашивание, характерное для энольной формы. Ациформа значительно лучше растворима в воде, чем нейтральная форма, и при прибавлении щелочей тотчас же растворяется в воде, так как при этом происходит моментальная реакция нейтрализации, не требующая перегруппировки. Ациформа нитропарафинов быстро присоединяет бром, В то время как псевдоформа реагирует только медленно. [c.268]

    Скорость потока зависит также от содержания кислорода в газе и температуры процесса. Если в газе нет кислорода, то при реакции превращения сероводорода в сульфид железа выделяется 145,555 ккал тепла на 1 кг сероводорода. При этом, если температура слоя ниже 45,6° С, то кристаллизационная влага не удаляется из поглотителя и в целом процесс очистки происходит со скоростью, [c.282]

    Максимальная (теоретическая) величина превращения сероводорода при отсутствии кислорода составляет 0,56 кг НаЗ на 1 кг гидроокиси железа. Если она достигается в процессе очистки, то при регенерации отработавшего слоя поглотителя с помощью кислорода количество образующейся серы может составить 2,45 кг на 1 кг сульфида железа. Продолжительность работы загрузки поглотителя определяется показателями процесса очистки. Если они меньше принятых при расчете процесса (пп. 2 и 3), то слой необходимо заменить. Затраты на замену слоя могут составить значительную часть общих эксплуатационных расходов процесса очистки газа гидроокисью железа. [c.283]

    Асфальтены являются высокомолекулярными гетероциклическими соединениями с высокой реакционной способностью, состоят из сильно конденсированных структур, богаты непредельными и представляют собой типичные коллоиды. Кроме того, в асфальтенах содержится наибольшая часть таких химически высокоактивных гетероатомов, как кислород, сера, железо, а также ванадий, никель, азот и титан в активной форме в виде порфириновых соединений. Строение кокса из асфальтенов отображает структуру исходных асфальтенов, так как распределение электрических (возможно, и спиновых) плотностей у исходного сырья оставляет свои следы [15] в виде структурных особенностей в карбоидных (полимерных) образованиях, несмотря на сложность последующих деструктивных превращений при коксовании. [c.27]

    Тестостерон в организме может дать начало образованию иных андрогенных гормонов не только в семенных железах. Превращение тестостерона в андростерон наблюдали при введении сто в кастрированный организм, а также в организм женщин. В этих ощлтах из мочи был выделен этио-холанолон. [c.153]

    Все электроды, потенциалы которых менее положительны, чем потен[ц1ал кислородного электрода, термодинамически неустойчивы в контакте с воздухом и водой. В этих случаях наблюдается самопроизвольное восстановление кислорода и превращение его в воду или в пероксид водорода с одновремепным окислением соответствующих металлов или других веществ. Так, наиример, металлическое железо ( ч +м с =—0,44 В) реагирует с кислородом воздуха  [c.185]

    И. В. Калечиц с сотр. [9] изучали конфигурационную изомеризацию 1,3-диалкилциклопентанов. Превращение г ис-1,3-диметилциклопентана в транс-форму над железо-платиновым катализатором протекает до концентраций, близких к равновесным обратное превращение проходит относительно неглубоко. В работах Ал. А. Петрова с сотр. [10] реакция конфигурационной изомеризации стереоизомерных ди- и полиалкилциклопента-нов была использована для установления термодинамического равновесия между ними и для вычисления значений ряда термодинамических функций. [c.69]

    Носитель получают смешением мел-коизмельченной каолиновой глины и древесной муки или других выгорающих добавок (нефтяной кокс, крахмал, сажа и др.)- Объемное отношение древесной муки к глине от 0,15 1 до 1 1. Смесь формуют, нагревают в окислительной атмосфере- при температуре 815° С и обрабатывают при 650° С газообразными реагентами (хлористый аммоний и сероводород) для превращения основного количества примеси железа в летучую или растворимую в кислоте форму. Примеси железа затем отдувают или промывают. После промывки кислотой глину сушат и прокаливают при [c.88]

    Левая ось диаграммы соответствует чистому железу, правая — карбиду РбзС (цементиту). Точки А м D показывают температуру плавления железа и карбида, точки G и N — температуры превращений а- и у-железа друг в друга. [c.675]

    Это явлеппе осложняет последовательное гидрирование ацетилена, в резульс тате которого получаются этилен и этан. При разложении фракции этан-пропан из природного газа Лесли п Занетти (см. выше) показали, что железо дает те же результаты, что и нпкель то же самое в отношении каталитического превращения этилена отметили Сабатье и Сандеран. [c.335]

    С другой стороны отметим опыт Бона, и Иордана и Контарди, имевшие целью превращение в ацетилен некоторых углеводородов под действием вольтовой дуги. Контарди подвергая антраценовое масло воздействию вольтовой дуги, полученной с помощью электродов иа угля или железа при 40 амперах и 50 вольтах. Он получил газ, содержавший 22% ацетилена, 50% СН4, 23% Нг, 50% (Nj..  [c.420]


    Гексан дал 18% ацетилена. Удалось даже достичь выхода ацетилена в 33%, однако эти опыты имеют слишком малые шансы на осуществление в промышленных масштабах. Бангерт я Пихяер пропускали ацетилен над силикагелем при 600—700° и получали снача.ча метан, водород и уголь, но затем под ката- литическим воздействием последнего также и жидкие олефиновые и ароматические углеводороды. Фишер, Петерс и Кох достигли превращения ацетилена в смолу на 40—7( % при 250° и над катализатором медь — железо. [c.420]

    Шелл дивелопмент компани разработала неосажденные катализаторы из окиси железа, промотированные карбонатом калия. Такой катализатор, известный как Шелл 105 и имеющий состав 90% ГегОз, 4% СггОз и 6% КгСОз, обладает хорошим самореге-нерирующими свойствами, требует меньше пара, но его селективность несколько ниже. При глубине превращения 27% выход бутадиена составляет 68—72%. С увеличением глубины превращения селективность катализатора снижается. При этом образуется больше газообразных продуктов, окислов углерода. Срок службы такого катализатора высокий — достигает нескольких месяцев. Катализатор Шелл 105 широко применяется в промышленных условиях. [c.71]

    Еще Вертело пытался ускорить реакцию между этиленом и серной кислотой, применяя в качестве катализаторов соли ртути. Фритцше [38] считал, что этилсерная кислота сама по себе достаточно акти1 ный катализатор. Это было подтверждено в работе [39]. В дальнейшем были изучены многие катализаторы [40, 41], причем наиболее эффективными оказались соли серебра, железа, меди и окислов ванадия. Действие солей в болынинстве случаев не зависит от аниона, но поскольку мы имеем дело с серной кислотой, рекомендуе -ся употреблять сульфаты (несколько отличаются друг от друга по действию соли одно- и двухвалентной меди). Иногда специфичность действия приписывается аммиачным солям [42] и циановым комплексам металлов [43], но, по нашему мнению, главная роль во всяком молекулярном комплексе принадлежит металлу (например, железу в соли Мора и ферроциановых соединениях). Различие может заключаться лишь в неодинаковом физическом состоянии катализатора в серной кислоте и в последующем изменении состояния с превращением части молекул серной кислоты в молекулы этилсерной кислоты или с введением влаги в серную кислоту. Сравнение действия различных катализаторов может привести к одним и тем же выводам кривые относительной интенсивности действия в ряду каталитических добавок приблизительно одного порядка. Абсолютные значения каталитического действия здесь не важны, поскольку они зависят от условий эксперимента. [c.22]

    Наиболее пригодны для сопоставления с приведенной выше теорией данные Орката но конверсии озона в кислород в присутствии окиси железа, осажденной на частицах алюмосилика-геля размером 20—60 мкм. Константу скорости реакции А , изменяли, варьируя температуру в слое, причем значения константы определяли нри одинаковых температурах в неподвижном и псевдоожиженном слоях твердых частиц. В результате степень превращения озона в нсевдоожиженном слое изменялась от очень малой величины до предельно возможной при высоких значениях к.  [c.339]

    При давлении 1200—1600 кгс/см начинается гидро-гёнизация антрацитов, а полуантрациты дают жидкие продукты (глубина превращения при 500 С соответственно 10—20 и 20—26%) тощие угли превращаются на 93—80%, давая 20% жидких продуктов Показано, что при подготовке черемховского угля к гидрогенизации можно применять обогащение путем центробежной сепарации в растворе сульфата железа, остаток которого служит катализатором [c.20]

    При сжигании сернистых топлив сера превращается в 80а однако в продуктах сгорания обнаруживается и 80з. Превращение 80 2 в 80з при сжигании мазутов составляет для малых топок [43 от 3,2 до 7,4%, а для больших от 0,5 до 4,0%. По литературным данным 44] в 80з превращается от 5 до 9% серы, содержащейся в топливе. При сжигании сернистых мазутов содержание ЗОз в дымовых газах (по объему) может доходить до 0,005%. Образование 80з зависит от содержания серы в топливе, температуры горения (нагрузка) и коэффициента избытка воздуха. Имеются указания на зависимость образования 80з от каталитического воздействия сульфатов и окиси железа, а также ванадия. Зависимость образования 8О3 от содержания серы в топливе и температуры приведена на рис. 4. 28. С ростом температуры нламеци количество 80з вначале возрастает, а затем при температуре пламени выше 1750° С приближается к постоянному значению, при увеличении коэфф1щиепта избытка воздуха с 1,1 до 1,7 окисление 302 в 8О3 увеличивается вдвое [43]. [c.271]

    Физические и химические свойства. Железо имеет ряд полиморфных видоизменений. Полиморфные превращения железа имеют очень большое значение в технологии металлов, так как они обусловливают структуру и свойства сплавов. Устойчивое при обычной температуре а-железо характеризуется объемноцептри-рованной кубической решеткой при 769°С оно теряет свои магнитные свойства — происходит 3-превращение без изменения структуры решетки при 908°С осуществляется переход в -железо с гранецентрированной кубической решеткой, при 1390°С переход в 6-железо с объемно центрированной кубической решеткой, а прн 1534°С плавление. [c.300]


Смотреть страницы где упоминается термин Железо превращение: [c.21]    [c.87]    [c.128]    [c.450]    [c.15]    [c.127]    [c.19]    [c.19]    [c.11]    [c.111]    [c.678]    [c.684]    [c.684]    [c.20]    [c.284]    [c.32]    [c.90]    [c.109]    [c.42]    [c.47]   
Основы общей химии Том 3 (1970) -- [ c.354 , c.356 ]




ПОИСК







© 2024 chem21.info Реклама на сайте