Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Железо сгорания температура

    Благодаря лучистому теплообмену с относительно холодными стенками камеры сгорания температура диска составляет 650—675°С при температуре омывающих его газов 1010—1050°С, что соответствует температурам отложений и газов в конвективных пароперегревателях котлов. Поверхность диска перед опытом подготавливалась одним из следующих способов полировалась, покрывалась окисью железа РезОз или окисью магния МдО. [c.107]

    В 1893 г. французский химик А, Муассан провел исследования которые заключались в следующем. Насыщенное углеродом железо при температуре до 3000° С выливалось в ледяную воду. В результате образования застывшей корки внутри охлаждающейся массы получалось высокое давление. Растворив в кислотах остывший слиток, Муассан обнаружил несколько крупинок, не взаимодействующих с кислотами и царапающих рубин. Их плотность была между 3 и 3,5 г/сл4 , и при сгорании они образовывали газ. [c.52]


    Аналогичные исследования на оксидах железа при температурах 673—1123 К показали, что извлечение серы из газов с низкой теплотой сгорания составляет более 90%- В некоторых опытах достигнута конечная концентрация сероводорода менее 10 млн-1. Для регенерации образующихся сульфидов железа при этих температурах используют воздух с обычным и повышенным содержанием азота и его смесь с водяным паром. Применение цинксодержащих агентов при температурах 623— [c.301]

    Химическая коррозия вызывается непосредственным действием на металл агрессивной среды. Чаще всего такой средой являются сухие газы, действующие на металл при высоких температурах (например, в двигателях внутреннего сгорания, в аппаратуре синтеза аммиака и др.). При температуре выше 350 °С сероводород вступает в непосредственное химическое соединение с железом, вследствие чего образуется сернистое железо  [c.171]

    Выплавка стекла. Стекло может быть прозрачным или полупрозрачным, бесцветным или окрашенным. Оно является продуктом высокотемпературного переплава смеси кремния (кварц или песок), соды и известняка. Для получения специфических или необычных оптических и других физических свойств в качестве присадки к расплаву или заменителя части соды и известняка в шихте применяют другие материалы (алюминий, поташ, борнокислый натрий, силикат свинца или карбонат бария). Цветные расплавы образуются в результате добавок окислов железа или хрома (желтые или зеленые цвета), сульфида кадмия (оранжевые), окислов кобальта (голубые), марганца (пурпурные) и никеля (фиолетовые). Температуры, до которых должны быть нагреты эти ингредиенты, превышают 1500 °С. Стекло не имеет определенной точки плавления и размягчается до жидкого состояния при температуре 1350—1600 °С. Энергопотребление даже в хорошо сконструированных печах составляет около 4187 кДж/кг производимого стекла. Необходимая температура пламени (1800— 1950 °С) достигается за счет сжигания газа в смеси с воздухом, подогреваемым до 1000 °С в регенеративном теплообменнике, который сооружается из огнеупорного кирпича и нагревается отходящими продуктами сгорания. Газ вдувается в поток горячего воздуха через боковые стенки верхней головки регенератора, которая является основной камерой сгорания, а продукты сгорания, отдав тепло стекломассе, покидают печь и уходят в расположенный напротив регенератор. Когда температура подогрева воздуха, подаваемого на горение, снизится значительно, потоки воздуха и продуктов сгорания реверсируются и газ начнет подаваться в поток воздуха, подогреваемого в расположенном напротив регенераторе. [c.276]

    В качестве антидетонаторов подробно исследованы и некоторое время практически использовались соединения железа. Высокими антидетонационными свойствами, в частности, обладает пентакарбонилжелезо (ПКЖ). Оно представляет собой не растворимую в воде жидкость бледно-желтого цвета с температурой кипения 102,5°С и те.мпературой плавления -2ГС. На свету соединение разлагается с выделением твердого нерастворимого осадка Ре(СО)з, который при соприкосновении с воздухом самовоспламеняется. Эффективность ПКЖ как антидетонатора на 15—20% ниже, чем ТЭС. При сгорании его образуется окись железа, отлагающаяся в камере сгорания в виде легкоподвижного осадка с высокими абразивными свойствами. Такие отложения увеличивают износ двигателя в 5—6 раз. Все попытки найти какой-либо выноситель для окислов железа или как-то нейтрализовать их абразивное действие успеха не принесли. [c.248]

    Жаростойкость — стойкость по отношению к газовой коррозии при высоких температурах. Жаропрочность — свойства конструкционного материала сохранять высокую механическую прочность при значительном повышении температуры. Жаростойкость обычно обеспечивается легированием металлов и сплавов, например стали хромом, алюминием и кремнием. Эти элементы при высоких температурах окисляются энергичнее, чем железо, и образуют при этом плотные защитные пленки оксидов. Хром и кремний улучшают также жаропрочность сталей. Стали, легированные 4—9 % хрома, молибденом или кремнием, применяют, например, в парогенераторе- и турбостроении. Сплав, содержащий 9—12% хрома, применяют для изготовления лопаток газовых турбин, деталей реактивных двигателей, в производстве двигателей внутреннего сгорания и т. п. [c.235]


    Полученный таким способом пентакарбонил железа отвечает формуле [Fe( O)g]. При обычной температуре он представляет собой жидкость, слабо окрашенную в желтый цвет. Т. пл. — 2ГС, т. кип. + 102,5° С. [Fe ( 0)5 может разлагаться с выделением СО. До 0,2% lFe( 0)5l прибавляется к жидкому топливу для обеспечения более равномерной вспышки в двигателях внутреннего сгорания. [c.362]

    Как известно, при сжигании высокосернистого мазута температура точки росы дымовых газов может намного превышать точку росы, определяемую парциальным давлением водяных паров в продуктах сгорания. Принято считать, что это превышение обусловлено содержанием в них сернистого ангидрида 50з. В результате этого серная кислота конденсируется на низкотемпературных поверхностях нагрева котельных агрегатов, и при взаимодействии кислоты с металлом образуются сернокислые соли железа. С осаждением кислоты связано также образование устойчивых наружных отложений золы и несгоревших частиц топлива. [c.283]

    Однако данные [79], приведенные на рис. 40, не согласуются с этой схемой. По мере роста температуры пламени содержание SO., в продуктах сгорания возрастает [79], затем при i 1750° С приближается к некоторому постоянному значению. В ряде работ [81, 82] выдвигается предположение, что образование SOg при сжигании сернистых топлив определяется каталитическим воздействием сульфатов, окисей железа и ванадия, находящихся в составе золы топлива, а также на внешнем слое поверхности нагрева. [c.89]

    До степени выгорания пыли 0,45—0,50 при всех температурах сгорания за счет разложения дисульфида железа в остатках сгорания резко уменьшается количество колчеданной серы. Возрастает количество выделяющейся при этом элементарной Серы, которая входит в состав органической серы. Твердые остатки на этой стадии выгорания при всех температурах сгорания содержат моносульфидную серу, количество которой с увеличением температуры снижается. При сжигании березовского угля выход моносульфидной серы меньше, чем при сжигании назаровского угля. Что же касается сульфатной составляющей серы, то ее количество несколько увеличивается. [c.109]

    Добавка пятикарбонила к смесям воздух — водяной газ резко уменьшает скорость сгорания последних. Температура вспышки керосина в токе воздуха повышается от небольших добавок пя-тикарбонила. Точно так же добавка карбонила железа повышает температуру вспышки мета-ксилола и ундекана и температуру начала сгорания их (т. е. образования альдегида) [140]. [c.65]

    Присадка кремния в аустенитные стали типа 25—20 повышает их сопротивление окислению при высоких температурах до 1150°С и коррозии в атмосфере продуктов сгорания топлива с повышенным содержанием серы и сернистых соединений. В восстановительных средах пиролиза углеводородного сырья эта сталь более устойчива к науглероживанию по сравнению с обычными хромоникелевыми аустенитными сталями. Однако присадка кремния увеличивает склонность стали к образованию в структуре о-фазы. Чем выше содержание кремния в стали типа 25—20, тем быстрее и в большем количестве выделяется а-фаза, особенно при длительном нагреве в интервале умеренно высоких температур. Эта фаза — очень твердая, хрупкая и немагнитная. Она представляет собой интерметаллнческое соединение железа с хромом типа Ре—Сг и образуется из твердого раствора по схеме у——> а-фаза либо непосредственно у —йт-фаза. [c.30]

    При сжигании сернистых топлив сера превращается в 80а однако в продуктах сгорания обнаруживается и 80з. Превращение 80 2 в 80з при сжигании мазутов составляет для малых топок [43 от 3,2 до 7,4%, а для больших от 0,5 до 4,0%. По литературным данным 44] в 80з превращается от 5 до 9% серы, содержащейся в топливе. При сжигании сернистых мазутов содержание ЗОз в дымовых газах (по объему) может доходить до 0,005%. Образование 80з зависит от содержания серы в топливе, температуры горения (нагрузка) и коэффициента избытка воздуха. Имеются указания на зависимость образования 80з от каталитического воздействия сульфатов и окиси железа, а также ванадия. Зависимость образования 8О3 от содержания серы в топливе и температуры приведена на рис. 4. 28. С ростом температуры нламеци количество 80з вначале возрастает, а затем при температуре пламени выше 1750° С приближается к постоянному значению, при увеличении коэфф1щиепта избытка воздуха с 1,1 до 1,7 окисление 302 в 8О3 увеличивается вдвое [43]. [c.271]

    Другим направлением окислительного дегидрирования углеводорода является проведение процесса на промышленных цинк-железо-хромовых или каль-ций-никель-фосфатных катализаторах в присутствии кислорода. При добавлении небольших количеств О2 механизм процесса в сущности не меняется, т. е. включает стадию образования молекулярного водорода. Однако скорость брутто-реакции возрастает за счет частичного сгорания последнего, а также в результате уменьшения перепада температур в зоне реакции и частичной регенерации и активации катализатора. В то же время селективность процесса несколько снижается из-за глуф сого окисления (сгорания) некоторого количества целевых углеводородов, В цМЗм эффект от применения указанного приема, по-видимому, [c.358]

    Производство чугуна — это первая стадия двухступенчатого процесса перерабо1 и железных руд в сталь, который в настоящее время преобладает. Чугун выплавляют из железорудного сырья в доменных печах, в которых за счет сгорания топлива создаются высокие температуры, обеспечивающие процессы восст шовления оксидов железа руды, образования жидкого чугуна и отделения пустой породы в виде шлака. Подобный процесс получил название доменного процесса или доменной плавки. [c.54]

    При керамической сварке тепловую энергию получают при сгорании в струе кислорода металлических порошков, например, алюминия, кремния и др. Торкрет-массу, содержащую такой топливный компонент и огнеупорный материал, например, динасовый мертель, подают в среде кислорода на нагретую до 800—1000 С (не менее) кладку. Большое количество тепла, выделяющегося при сгорании металлов в кислороде, расходуется на расплавление огнеупорных компонентов торкрет-массы. Условие высокой температуры кладки обуславливается необходимостью инициирования и поддержания горения. Метод ремонта с помошью экзотермических торкрет-масс состоит в нанесении на горячую кладку печи водной суспензии или сухих порошков, включающих термическую смесь, то есть алюминий или кремний и оксиды металлов, например, железа, кобальта, никеля, марганца, огнеупорный порошок. Нагреваясь от кладки, алюминий (кремний) вступает в <симическую реакцию с твердыми оксидами. Выделяющаяся при этом тепловая энергия расходуется на расплавление материала и формирование на дефектах защитной огнеупорной наплавки. Способ не нуждается в использовании традиционных энергоносителей — топливного газа или кислорода, так как процесс теплогенерации происходит в твердой фазе. Есть способы, комбинирующие факельное торкретирование и экзотермические добавки. [c.203]

    Окисление железа, стали и чугуна происходит при нагреве их в среде воздуха или продуктов сгорания топлив. Металл при этом покрывается слоем окалины, состоящей из окислов — соединений металла с кислородом. Окисление происходит особенно быстро при температурах выше 600° С. Железо с кислородом образует три вида окислов, имеющих различные кристаллические решетки закись железа РеО (вюстит), окись железа РегОз (гематит) и сложный окисел, или закись-окись Рез04 (магнетит). [c.25]


    Цементацию осуществляют в специальных аппаратах — карбюризаторах. Источником углерода является древесный уголь, который при неполном сгорании и в результате ряда химических реакций образует активный углерод, твердые растворы углерода в железе и цементит ГезС. Для повышения скорости цементации в карбюризатор добавляют карбонат бария, а для предотвращения спекания — карбонат кальция. В системе древесный уголь + ВаСОз + СаСОз -Ь Ог-Ь -I- стальная деталь поддерживается температура 920 °С, что создает условия для протекания следующих процессов  [c.631]

    ЧуГуны произвольного состава в отличив от кон вё()торйых способов могут быть переработаны мартеновским методом. Процесс Мартена заключается в окислении примесей (51, Мп, С, 5, Р) кислородом воздуха, который пропускают над раскаленным металлом и кислородом, содержащимся в окислах железа последние присутствуют в мартеновской печи в виде металлолома, требующего переплавки, и в. виде некоторого количества железной руды, предварительно загружаемой в печь. Для разогрева мартеновской печи, имеющей открытый под, сжигают предварительно разогретые нефть или горючий газ. При сгорании топлива образуется факел температурой 1700—1900°. Металл и руда плавятся, и в расплав вводят специальные добавки, необходимые для получения сталей заданного состава. В мартеновском способе, так же как и в конверторном, кислородное дутье сильно интенсифицирует процесс. [c.351]

    По характеру своей работы домна (рис. XIV-1) является печью непрерывного действия. Будучи раз введена в эксплуатацию ( задута ), она затем безостановочно функционирует в течение нескольких лет. Для поддержания процесса, сводящегося, в основном, к восстановлению железа из его окислов, сверху через колошник вводится шихта , т. е. последовательные слои железной руды, кокса и т. н. флюсов — специальных добавок (чаще всего СаСОз), необходимых для придания легкоплавкости образующему. я шлаку. Снизу через фурмы в домну все время вдувается воздух, предварительно сильно нагретый. За счет сгорания кокса температура в нижней части домны поддерживается на уровне приблизительно 1800°С. По направлению кверху она постепенно понижается и у колошника равна около 400°С. Накапливающиеся на дне печи расплавленный металл и жидкий шлак периодически выпускаются через специальные отверстия. Последовательный ход доменного процесса хорошо виден на рис. XIV-I. [c.436]

    Циклогексанол-ректификат (99,9%-ный) насосом 1 подается через фильтр 3 в трубчатый, обогреваемый паром подогреватель 4, где нагревается до 100—110°, и далее направляется в испарительно-перегревательную систему из трех последовательно соединенных трубчатых аппаратов 5, 6, 7. Эти аппараты помещены в огнеупорную камеру и обогреваются топочными газами, выходящими из межтрубного пространства основного контактного аппарата 8. Перегретые пары циклогексанола с температурой 400—450° поступают в контактный аппарат 8, в трубы которого помещены 2-образные пластинки из оцинкованного железа, служащие катализатором дегидрирования. Необходимая для дегидрирования температура поддерживается обогревом труб топочными газами, получаемыми при сгорании метана или метано-водородной смеси (выделяемой из газов пиролиза). [c.688]

    При испытаниях анодной массы из ферганского кокса наблюдалось повышенное образование угольной пены, вызванное, по-види-мому, чрезмерной глубиной прокалки кокса и недостаточным содержанием в анодной массе связующего. Повышенное пенообразо-ваиие и недостаточное количество связующего обусловливали повышенную скорость сгорания анодов и высокую температуру электролита. Последняя, в свою очередь, вызвала некоторое снижение выхода по току алюминия н повышенное содержание в готовом металле железа и кремния. Увеличению содержания железа и кремния способствовала также высокая зольность прокаленного ферганского кокса. [c.283]

    Рабочая температура (360—700 °С) в тепловых батареях создается за счет тепла, выделяющегося при сгорании специальных нагревательных смесей. Для поджога смесей служат запальные устройства. К таким нагревательным смесям относятся смеси пероксида бария с порошком алюминия или магния, ок-СИДОВ железа и алюминия и др. [c.81]

    Наиболее распространенным сплавом типа Ni u является мо-нель, содержащий примерно 65% никеля. Он противостоит всем типам агрессивных атмосфер, нейтральным и кислым растворам солей, например хлоридам, сульфатам и др., исключая азотнокислые соли и хлорид железа. В неокисляющих кислотах очень стабилен. Сплав инконель с содержанием примерно 75% никеля, 15% хрома и 4—6% железа более устойчив в окисляющей среде, чем монель. Его применяют при производстве аппаратуры дл органического синтеза при высоких давлениях в присутствии галогенов, окислов азота или сероводорода. Сплавы типа Ы1Сг известны как нимоник. Он легко поддается ковке и сохраняет свои механические свойства при высоких температурах. Как жаростойкий и жаропрочный материал нимоник применяют главным образом при производстве оборудования и узлов, работающих в продуктах сгорания при высоких температурах. Чаще всего из этого сплава изготовляют камеры и лопатки газотурбинных установок, которые подвержены воздействию температур 700—800° С. [c.37]

    При определении содержания золы в очаговых остатках в общем могут иметь место те же реакции в их минеральной части, что и прн определении содержания золы в топливе. Следовательно, содержание горючего, обычно определяемое по потере при прокаливании, как разность (100—А ), в большей или меньшей степени искажено этими реакциями. Пройдя зону высоких температур в топке, очаговые остатки имеют изменившийся по сравнению с топливом состав минеральной массы и поэтому каждая из описанных выше реакций играет иную роль в весовом изменении минеральной массы очаговых остатков при их озолении, чем при определении содержания золы в самом топливе. Так, например, здесь возрастает значение реакции окисления закисного железа как за счет часто высокого процента содержания его в минеральной массе очаговых остатков, так и за счет высокого содержания в них самой минеральной массы. Кроме того, в очаговых остатках часто содержатся соединения, обычно не встречающиеся в природном топливе, которые при озолении изменяют вес и состав минеральной массы очаговых остатков — это мо-носульфидное железо и железо металлическое. Первое из них образуется при неполном сгорании колчедана [c.109]

    Находящиеся в продуктах сгорания сульфаты и хлориды щелочных металлов конденсируются из потока на относительно холодные поверхности нагрева. Интенсивность процесса конденсации щелочных соединений определяется их парциальным давлением в продуктах сгорания и температурой поверхности. Поскольку сульфаты и хлориды щелочных металлов действуют иа металл коррозионно, то наличие их в отложившейся золе и является основной причиной связывания отложений с трубами. Щелочные хлориды имеют более высокую коррозионную активность, чем сульфаты щелочных металлов. Поэтому роль хлоридов в процессах образования первоначальных золовых отложений более высокая. Предполагается, что в процессах возникновения первоначальных отложений, наряду с простыми сульфатами щелочных металлов, определенное значение имеют также комплексные сульфаты и пиросульфаты. При отсутствии в топливе щелочных металлов и хлора связыванию отложений с металлом способствует врастание окислов железа в плотные кальцесульфатносвязанные или другие отложения, [c.9]

    В зависимости от температуры и концентрации кислорода в продуктах сгорания из колчедана в конечном результате могут образоваться такие соединения, как SO2, SO3, РегОз, РеО и Р ез04. При этом прамежуточным продуктом может являться моносульфид железа. Последний может образоваться при нехватке воздуха и быть конечным соединением. [c.95]

    При высоких температурах продуктов сгорания Or>100 f образование золовых отложений на конвективных поверхностях нагрева происходит не только на базе наносимых на поверхность нагрева частиц летучей золы в твердом виде и конденсации щелочных соединений, а определенную роль играет и перенос на поверхность наиболее легкоплавких частиц. В результате этого образуются уже не связанные, а связанно-шлаковые отложения. Эти отложения, по сравнению со связанными отложениями характеризуются более высоким содержанием железа и отличаются меньшей степенью сульфатизации в начальных стадиях образования. [c.212]

    Все углеводородные масла, соприкасаясь с воздухом при достаточно высоких температурах и при достаточно длительном сроке взаимодействия, реагируют с кислородом. Двигатель внутреннего сгорания является поэтому идеальной окислительной машиной, поскольку в нем моторное масло энергично перемешивается с воздухом, часто при весьма повышенных температурах и в течение продолжительного времени. В пределах температур, имеющихся в двигателях, степень окисления масла примерно удваивается при каждом повышении температуры на 10°. Следовательно, масло, окисляемое при 140°, окислится в 32 раза сильнее, чем окисляемое при температуре 90°. Хорошо очищенные моторные масла при температурах 90° и ниже окисляются весьма незначительно, по уже прп 120° и выше окисление может стать весьма ощутимым. Кроме того, металлы действуют как эффективные катализаторы или усилители окисления, особенно железо, медь и свинец. Следовательно, степень окисления моторного масла может увеличиться в сотни раз ири повышенпой температуре при условии соприкосновения с металлической поверхностью двигателя, а также с частицами металла, являющимися результатом естественного износа двигателя, и при загрязнении масла твердыми частицами из выхлопных газов и пылью из воздуха [5, 6]. [c.164]

    Очень хорошо подвод тепла можно осуществить также при установке нагреваемых изделий на стойках или подставках, достаточно тонких и высоких, чтобы доступ тепла был свободным со всех сторон. Выбор высоты, толщины и материала стоек зависит от температуры и веса заготовок. Если температура не превышает 900°, можно применять стойки из чугуна и стали. При более высокой температуре они быстро выходят из строя вследствие окисления. Кроме того, они прогибаются из-за низкого сопротивления ползучести. Высокие и тонкие подставки из карборунда при высоких температурах устойчивы и прочны, но разъедаются расплавленным железом и жидким шлаком. Высокие стойки из самого лучшего кирпича разрушаются при загрузке печи и при выдаче из нее. Поэтому при температурах выше 900° предпочтительно применять низкие столбики (или выступы) из кирпича. Несмотря на небольшую высоту над подом, подвод тепла будет достаточно равномерным, если отдельные изделия садки расположить на поду печи таким образом, чтобы излучение от дымовых газов и свода на подину могло отражаться а нижнюю часть садки. При температурах ниже 760° излучение уже недостаточно сильно и тогда в пространство ниже садки подводят продукты сгорания. [c.355]


Смотреть страницы где упоминается термин Железо сгорания температура: [c.307]    [c.154]    [c.283]    [c.173]    [c.176]    [c.147]    [c.236]    [c.288]    [c.87]    [c.250]    [c.37]    [c.138]    [c.161]    [c.40]    [c.202]    [c.78]   
Основы общей химии Том 3 (1970) -- [ c.300 ]




ПОИСК







© 2024 chem21.info Реклама на сайте