Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катионы поляризующие

    Катионы К"+ связываются в растворе с гидратирующими их молекулами воды донорно-акцепторной связью донором являются атомы кислорода, имеющие две свободные электронные пары, акцептором — катионы, имеющие свободные квантовые ячейки, Чем больше заряд иона и чем меньще его размер, тем значительнее будет поляризующее действие К"+ на Н2О. [c.265]

    Гидроксиды типа [Э(КНз)21(ОН) значительно устойчивее, чем ЭОН, и по силе приближаются к щелочам. Это объясняется уменьшением поляризующего действия катиона Э на ионы ОН" за счет экранирования молекулами аммиака. [c.625]


    Катионы связаны с молекулами воды донорно-акцепторной связью донором являются атомы кислорода, имеющие две свободные электронные пары, акцептором — катионы, имеющие свободные электронные ячейки. Чем больше заряд иона и чем меньше его размер,тем значительнее будет катионная доля поляризующего действия К на Н2О. Анионы связаны с молекулами воды водородной связью. Сильное влияние может привести к полному отрыву протона — водородная связь становится ковалентной. Донорная активность А" будет тем значительнее, чем больше я и меньше га . В зависимости от силы поляризующего влияния К"" и А" на молекулы Н2О будут получаться различные результаты. Так, катионы элементов побочных подгрупп и непосредственно следующих за ними элементов подвергаются более интенсивному гидролизу, чем другие ионы одинаковых с ними заряда и радиуса, так как ядра первых менее эффективно экранируются -электро-нами. [c.202]

    Вопрос о том, какова природа активных центров алюмосиликатных катализаторов, до настоящего времени окончательно не решен. Ряд авторов считает, что катализ осуществляется кислотными центрами Бренстеда, другие приписывают определяющую роль кислотным центрам Льюиса. С появлением цеолитных катализаторов крекинга вопрос стал, по-видимому, менее ясен, так как сильное влияние на их свойства оказывает природа катионов. В частности, в ряде работ установлена корреляция активности цеолитных катализаторов с поляризующей силой катионов, измеряемой величиной ге г (где ге — заряд иона г — его радиус). [c.213]

    Если соединение при ионизации образует катионы, которые поляризуют молекулы гидратной оболочки, и анионы, слабо поляризующие и<, то происходит гидролиз по катиону. При этом образуется кислая среда  [c.211]

    Отмечается сходство спектральных проявлений при адсорбции пиридина декатионированным цеолитом и цеолитом кальциевой формы, адсорбировавшем небольшое количество воды [94]. Это свидетельствует о сходстве в этих типах цеолитов структурных элементов, обусловливающих их кислотные свойства. При этом принимается, что адсорбированные молекулы воды реагируют с ионом Са + с образованием [Са—0Н]+ и структурных групп ОН. Считается, что в случае цеолитов со щелочными обменными катионами поляризующая способность этих однозарядных катионов недостаточна для диссоциации адсорбированных молекул воды. [c.375]

    Дополнительный поляризационный эффект и тем самым суммарное поляризующее действие особенно велики для 18-электрон-ных катионов, например, для d +, Hg +. [c.113]

    Таким образом, валентные возможности ЩЭ не слишком разнообразны — это металлическое состояние (степень окисления 0) и одновалентное состояние (степень окисления +1), причем из-за относительно низкой величины ПИ1 ионное состояние М+ именно для ЩЭ наиболее характерно. Поэтому соединения ЩЭ обычно рассматриваются как модельные, когда нужно изучить свойства соединений с преимущественно ионной связью. Для теоретической, да и практической химии ионные соединения, которым присущи, например, высокие температуры плавления и кипения, большая термическая устойчивость, чрезвычайно важны. Кроме того, ионы ЩЭ имеют наименьшее среди других катионов поляризующее действие, закономерно уменьшающееся в ряду Ь1+—Сз+. Это позволяет, подбирая катион ЩЭ с необходимыми характеристиками, получать соединения относительно малоустойчивые (гидриды, перекиси и др.), которые не могут быть получены, когда роль катиона выполняет более сильный поляризатор, чем ЩЭ+. [c.7]

    Таким образом, окраска полярной молекулы зависит от наличия у катиона свободных электронных подуровней, от способности катиона поляризовать анион и соответственно от способности этого аниона к поляризации. [c.69]


    Если соединение при ионизации в растворе образует катионы и анионы, которые слабо поляризуют гидратную оболочку, гидролиз практически не происходит, и pH среды не изменяется  [c.210]

    Поскольку размеры анионов, как правило, больше размеров катионов, то анионы обладают большей поляризуемостью и меньшей поляризующей способностью, чем катионы. Поэтому при взаимодействии катиона с анионом поляризации подвергается преимущественно анион поляризацией катиона в большинстве случаев можно пренебречь. [c.68]

    Таким образом, анионы в сравнении с катионами характеризуются сильной поляризуемостью и слабой поляризующей способностью. Поэтому при взаимодействии разноименных ионов поляризации подвергается главным образом отрицательный ион поляризацией положительного иона в большинстве случаев можно пренебречь. [c.153]

    Наличие максимумов на кривых зависимости температуры плавления от молекулярной массы для галогенидов щелочных металлов становится понятным, если учесть ослабление поляризующего действия катионов в ряду Li+ — Na+ — К+ — Rb+ — s+ и усиление поляризуемости в ряду F — 1 — Вг — I-.  [c.114]

    Если катионы и анионы имеют небольшие заряды и значительные размеры, то их поляризующее влияние на молекулы воды невелико, т. с. взаимодействия соли с НаО практически не происходит. Это относится к таким катионам, как К+ и Са +, и к таким анионам, как С1 и N0 . Следовательно, соли сильного основания и сильной кислоты гидролизу не подвергаются. В этом случае равновесие диссоциации воды в присутствии ионов соли почти не нарушается. Поэтому растворы таких солей практически нейтральны (рН 7). [c.266]

    Связь с ионами образуется большей частью с помощью донорно-акцепторной связи или в результате ионо-дипольного взаимодействия, причем образованию связи благоприятствует малый размер катиона, большой заряд его, например А1 , и связанная с этим большая его поляризующая способность. При большом размере аниона с увеличением общего размера катиона (вместе со связываемыми им молекулами воды) возрастает координационное число и при этом увеличивается устойчивость такой структуры. [c.141]

    Если, наоборот, анионы являются слабыми донорами электронов, а катионы обладают значительным поляризующим действием Си + и др.), то взаимодействие обусловлено влиянием на молекулы Н2О катионов, т. е. происходит гидролиз по катиону. Примером служит процесс [c.203]

    Если и катионы и анионы обладают умеренным поляризующим действием, то в процессе обменного разложения воды участвуют те и другие. Происходит гидролиз по катиону и по аниону. Примером служит процесс [c.204]

    Следует подчеркнуть, что, связывая гидролиз с поляризующим влиянием ионов соли, с акцепторной способностью катионов и донорной способностью анионов, мы имеем в виду лишь качественную сторону явления. К количественным или полуколичественным результатам такой [c.204]

    При взаимодействии с катионами молекулы воды ориентируются к ним своими атомами кислорода. Взаимодействие усиливается благодаря поляризующему действию катиона на молекулы воды. Этому благоприятствует малый размер катиона и более высокий заряд его (Mg , Al " ). [c.141]

    Вода, диспергированная в нефти, обычно содержит растворенные соли. Такая вода является электропроводящей вследствие диссоциации раствора, обусловливающей присутствие в нем ионов. Под воздействием постоянного электрического поля капелька соленой воды поляризуется и вытягивается в эллипсоид вращения аналогично капельке пресной воды. Только такая капелька, являясь проводящей, при той же напряженности внешнего поля сильнее вытягивается, так как на ее поверхности, кроме связанных зарядов, индуцируются еще и свободные на входе силовых линий в капельку сосредоточены анионы, на выходе - катионы. Эти отрицательные и положительные заряды распределяются по поверхности капельки таким образом, что создаваемые ими внутри капельки поля и внешнее электрическое поле взаимно компенсируются [41, 42]. [c.50]

    Помимо молекул воды и аммиака, в состав катионных комплексов в качестве лигандов могут входить также и другие нейтральные, но полярные (или легко поляризующиеся) молекулы. [c.133]

    Таким образом, разрыв ковалентной связи для получения двух нейтральных соединений всегда должен дать два радикала, каждый со свободной валентностью и обладающий активностью свободного радикала. Разрыв ионной связи может дать либо два иона с заполненными оболочками, имеющими только электростатический поляризующий момент (MgO = Mg + + О ), либо два иона, один из которых (обычно катион) также имеет электрон с непарным спином и поэтому имеет дополнительные свойства, присущие радикалу (например, NiO = NiO +0 -). Молекулы веществ, образующих твердые поверхности, дегазированные в вакууме, обладают множеством свободных связей, по которым могут идти реакции с молекулами газовой фазы (хемосорбция) с образованием различных поверхностных комплексов- Очевидно, что каталитическое действие твердого вещества зависит от составляющих его лептонов. Раньше исследователи связывали высокую каталитическую активность с переменной валентностью, цветом, магнитными свойствами и т. д. Сравнительно недавно метод электронной проводимости стал доминирующим в определении их свойств. Он лучше отражает электронную структуру оболочек на основе периодической системы, хотя дает лишь общую характеристику, которая не может заменить результатов, получаемых при детальном изучении химии и физики исследуемых твердых тел. [c.20]

    Процесс катализа, очевидно, осуш,ествляется следуюш им образом. Реагирующая молекула, попадая в силовое поле катиона, поляризуется вследствие оттягивания электронов катионом. Чем больше си.ювое поле, тем быстрее и глубже она испытывает такие деформации. Следовательно, литиевая форма цеолита, содержащая катионы меньшего радиуса и имеющая большее силовое поле, будет более активной, чем натриевая, калиевая и рубидиевая. [c.313]

    Поляризующая способность ионов, т. е. их способ-, ность оказывать деформирующее воздействие на другие ноны, также зависит от заряда и размера иона. Чем больше заряд иона, тем сильнее создаваемое им электрическое ноле следовательно, наибольшей поляризующей способностью обладают многозарядные ионы. При одном и том же заряде напряженность электрического поля вблизи иона тем выше, чем меньше его размеры. Поэтому поляризующая способность ионов одинакового заряда и аиалогичиого электронного строения падает с увеличением иотюго радиуса. Так, в ряду катионов щелочных металлов поляризующ.а,я [c.152]

    Автор провел сопоставление по литературным данным каталитической активности (к. а.) различных бинарных (иногда более сложных) твердых тел примерно для 300 реакций различных классов со следующими свойствами твердых тел типом проводимости, шириной запрещенной зоны, работой выхода электрона, разностью электроотрицательностей, величиной 1/е , числом d-электронов катиона, поляризующей способностью катиона (отношением квадрата заряда к радиусу), расстоянием между атомами металла и неметалла ме- х- Только использование последних достижений в области методов исследования катализаторов и адсорбентов позволяет провести такие сопоставления. Тем не менее, в большинстве работ вплоть до последнего времени эти методические достижения не используются не измеряется удельная поверхность, катализ изучается в статическом или струевом режиме без учета макрокинетических факторов, исследования проводятся часто в очень узких пределах температуры, давления и т. д., к. а. характеризуется не скоростью или константой скорости, отнесенными к 1 поверхности, а выходом продуктов реакции. [c.77]


    Тем не менее заслуживает упоминания возможность дальнего взаимодействия между ионами через посредство поляризованных молекул воды в соответствии с концепцией локального гидролиза, принадлежащей Робин-сон г и Харнеду [37]. Если катион поляризует соседнюю с ним молекулу воды, то входящие в эту молекулу атомы водорода становятся более положительными (с более ярко выраженными кислотными свойствами). Такие атомы по сравнению с водородными атомами обычных молекул воды более склонны к образованию водородных связей с анионом, хотя бы через посредство других частиц. Результат столь тонкого взаимодействия между катионом и анионом не отличается от результата прямого взаимодействия между этими частицами — он состоит в стабилизации ионов в той фазе, где указанное взаимодействие при прочих равных условиях легче возникает. Хотя взаимодействия описанного типа не ведут к образованию устойчивых ионных пар, их роль становится весьма ощутимой в концентрированных растворах, что будет ясно из дальнейшего изложения. Подобные взаимодействия между ионами, по-видимому, широко распространены и находят свое отражение в осмотических коэффициентах и коэффициентах активности галогенидов [37], гидроокисей и ацетатов щелочных металлов [38]. [c.183]

    Это, в частности, следует из данных работы [1554], где систематически рассматривалось разложение ферроцианидов сал1ария. Зависимость температуры начала диссоциации солей типа ]Vi Sm [ Ре ( N)g] от ионного потенциала М+ приведена на рис. 116. Как видно из рисунка, при переходе от нормального ферроцианида Sm Sm [Ре(GN)g])3 к смешанному M Sm [Pe( N)e]y снижение почти в четыре раза ионного потенциала металла третьей сферы М+ мало сказывается на температуре начала термической диссоциации По-видимому, это связано с тем, что у смешанных ферроцианидов во второй координационной сфере размещаются одинаковые по своей природе катионы Поэтому устойчивость соли оказывается зависящей, главным образом, от этого катиона,, поляризующее действие которого на анион более сильно. [c.266]

    Молгно, однако, подобную молекулу рассматривать как ионную, в которой катион, поляризуя анион, оттягивает на себя захваченный анионом электрон, уменьшая этим величину диполя. [c.103]

    Процесс разрушения структуры воды, на ван взгляд, состоит из нескольких одновременно осуществляющихся стадий. Крупный однозарядный катион поляризует сразу несколько молекул воды (аналогично бояышнству катионов), разруная структуру воды по механизму, характерному для гидратирующихся катионов. Однако вследствие взаимодействия со многими молекулами воды (чему способствует большой радиус катиона) я наличия слабого поля по отноиевию к отдельной молекуле воды (малый эффективный заряд катиона), связь молекул воды с катионом является достаточно слабой. Если принять, что анион также способен гидратироваться и в примерно такой же степени (по числу связываемых молекул воды и энергии связи ион - молекула воды), то столкновение двух противоположно заряженных сфер с взаимопроникновением различно поляризованных молекул воды в радиус действия катиона и аниона ликвидирует поляризованные молекулы воды, переводя их в "свободное" состояние. Если же принять, что анион совсем не способен гидратироваться, то образование кратковременной контактной ионной пары катион-анион настолько уменьшит силовое Поле катиона, что с а окажется неспособным "удерживать" молекулы воды и результат окажете тем же с мым. Схематически эти процессы можно описать следующим образом  [c.6]

    Напомним, что катионы в водном растворе существуют в виде катиоиных аквокомплексов, образованных за счет донорно-акцеитор-ного Езаимодействия К—ОН 2-Аквокомплексы в свою очередь гидратированы посредством водородных связей. Можно считать, что чем выше заряд и меньше размеры катиона, тем сильнее его акцепторная способность (прочнее связь К — ОН г), тем сильнее поляризуется связь [c.209]

    Решение. Ион Il , имеющий 17-электроииую внешнюю оболочку и сравнительно небольнюй радиус (0,08 нм), обладает сильным поляризующим действием, а большой по размеру ион ]- (г = 0,22 нм) характеризуется высокой поляризуемостью. Поэтому поляризация аниона I катионом Си + приводит к полному переходу электрона от аннона к катиону ион Си + восстанавливается до Си+, а нон I окисляется до свободного иода. Соединение ub не существует. [c.69]

    Ион Са + обладает благородногазовой электронной структурой, а его радиус составляет 0,104 им поэтому оп оказывает более слабое иоляризуюи1ее действие на анион, чем ион ll +. С другой стороны, поляризуемость иона F , обладающего сравнительно малыми размерами (г = 0,133 нм), значительно меньше, чем иона I . При взаимодействии слабоноляризуюшего катиона Са - со слабо поляризующимися анионом F- электронные оболочки ионов почти не деформируются соединение aFa очень устойчиво. [c.69]

    Потому что 1) гидроксид магния проявляет только основные свойства, а гидроксид цинка амфо-терен 2) катион с блaгopoднoгaзoвoi электронной конфигурацией оказывает меньшее поляризующее действие на анион, чем катион того же размера и заряда с 18-электронной структурой внешнего слоя. [c.70]

    Химические свойства водорода в значительной степени определяются способностью его атомов отдавать единственный имеющийся у них электрон и превращаться в положительно заряженные ионы. При этом проявляется особенность атома водорода, отличающая его от атомов всех других элементов отсутствие про ме 4<уточиых электронов между валентным электроном и ядром. Иои водорода, образующийся в результате потери атомом водо рода электрона, предбтавляет собой протон, размефы которого на несколько порядков меньше размера катионов в(зсх других эле ментов. Поэтому поляризующее действие протона очень велико, вследствие чего водород ие способен образовывать ионных соеди нений, в которых он выступал бы в качестве катиона. Его соединения даже с наиболее активными неметаллами, например, е фтором, представляют собой вещества с полярной ковалентной связью. [c.344]

    Аналогично ведут себя в поле катионов некоторых переходных металлов и другие полярные или легко поляризующиеся молекулы, способные проявлять протондонорные свойства — Н2О, NH20И, органические амины. Выступая в качестве лигандов, они способны к отн еплепию протона в водных растворах и с точки зрения протонной теории кислот и оснований (стр. 245) ведут себя как кислоты. Например, взаимодействие гидратированного иона меди с водой следует записать так  [c.604]

    Принципиальное значение имеет изучение влияния природы ионообменного катиона на каталитическую активность и селектиниость цеолитных катализаторов. Было высказано предположение, что одно- и двухвалентные катионы оказывают поляризующее действие на молекулы углеводородов, облегчая протекание исследуемых реакций. В случае двухвалентного катиона отмечался определенный вклад в каталитическую актпнпость некоторой некомпенсированности положительного заряда на катионе, возрастающий по мере увеличения расстояния от катиона до алюмосиликатного тетраэдра. [c.14]

    Так как для анионов характерны большие размеры и йаяыЙ заряд, а их электронная структура, как правило, отвечает структуре благородного газа, то поляризующее действие аниона на катион обычно 1 евелико, поэтому им часто можно пренебречь, т. е. считать, что поляризация носит односторонний характер. Если, однако, катион легко деформируется, то возникший в нем диполь усиливаёт его поляризующее действие на анион анион в свою очередь оказывает дополнительное действие на катион и т. д. Это приводит к появлению дополнительного поляризационного эффекта, который тем больше, чем значительнее поляризуются катион н анион. I [c.113]

    Увеличение стягивания иопов в результате их поляризации приводит к тому, что длина диполя оказывается меньше межъядерного расстояния (так, длина диполя в молекуле КС1 равна 167 пм, в то время как межъядерное расстояние составляет 267 пм). Это различие особенно велико у водородосодержащих соединений. Если пренебречь размерами иона водорода, то в предположении чисто ионной связи расстояние между ядрами во- дорода и галогена должно равняться г -. Однако < г -для всех Э, так, Гс,-= 181 пм, а н- i = 127 пм. Это означает, что в отличие от других катионов протон проникает внутрь электронной оболочки аниона. Внедрившись в анион, протон оказывает сильное поляризующее действие, что приводит к резкому уменьшению полярности водородных соединений (по сравнению с аналогичными соединениями других катионов). Поляризационный же эффект приводит к тому, что длина диполя НС1 составляет -всего 22 пм. Наконец, проникновение протона внутрь аниона обусловливает уменьшение деформируемости последнего. [c.113]

    Взаимная поляризация ионов облегчает разрушение кристаллов, т. е. понижает температуру плавления, и тем значительнее, чем сильнее деформируется в результате поляризации кристаллическая решетка. Так, хотя у RbF иТ1Р радиусы катионов одинаковы, однако ион Т1+ сильнее поляризуется и оказывает значительно большее поляризующее действие на ион F , чем ион Rb+, и это сказывается, в частности, на температура х плавления указанных солей т. пл. RbF 798 °С, а т. пл. T1F 327 °С. [c.114]

    Повышение температуры обычно способствует поляризации. Так как нагревание увеличивает амплитуду колебаний ионов и тем самым сближает их, то оно может привести к перестройке структуры вещества, происходит полиморфное превращение (см. разд. 3.2). Не исключена, возможность того, что нагревание, вызовет полный переход электрона (электронов) от аниона к катиону. В результате произойдет термическая диссоциация вещества. Чем сильнее поляризация (поляризующее действие), тем ниже температура диссоциации. Например, температура разложения понижается в ряду соединений данного катиона M I — MI и данного аниона NaP — Lif. Другой пример если разложение СаЬ требует высоких температур, то реакция Аи1з = Аи1 + + Ь происходит при низких температурах при еще более низких температурах долж а идти диссоциация СиЬ, поэтому в обычных условиях это вещество не существует. [c.114]

    В других случаях процесс полимеризации может быть осуществлен в форме реакции, протекающей по ионному механизму. К катионным катализаторам относят такие вещества, как ВРз, AI I3 и др., которые, не имея полного электронного октета в наружном электронном слое центрального атома, являются веществами электронофильными, т. е. способными при взаимодействии с другими молекулами оттягивать от них электроны. Поэтому при взаимодействии катализатора с молекулами производных этилена, содержащими двойную связь, эта связь поляризуется или молекулы в целом переходят в состояние катиона. Этим облегчается процесс полимеризации (в частности, в растворах и эмульсиях). [c.564]


Смотреть страницы где упоминается термин Катионы поляризующие: [c.147]    [c.194]    [c.209]    [c.295]    [c.714]    [c.594]    [c.317]    [c.301]    [c.213]   
Основы общей химии Том 3 (1970) -- [ c.97 , c.228 ]




ПОИСК







© 2025 chem21.info Реклама на сайте