Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кобальт биологическое значение

    К этой группе веществ должны быть отнесены также и вещества иного типа строения, например вещества, в молекуле которых металл соединен с атомом азота. Некоторые из веществ подобного рода имеют весьма важное биологическое значение. К ним относится, например, гемоглобин, содержащий железо, хлорофилл, содержащий магний (см. стр. 222), витамин В12, содержащий кобальт, и др. [c.301]

    Для поддержания жизни, как показано в настоящее время, существенное значение имеют около 20 элементов, хотя живая ткань часто содержит в следовых количествах все элементы, находящиеся в окружающей среде. Основные элементы живых систем — это водород, углерод, азот и кислород (2—60 ат. %). Установлено, что из всех элементов, присутствующих в следовых количествах (0,02—0,1 ат. %), фосфор, сера, хлор, натрий, калий, магний и кальций необходимы для поддержания процессов жизнедеятельности. Некоторые из элементов, присутствующих в сверхмалых количествах (менее 0,001 ат. %), также относятся к числу необходимых. Это марганец, железо и медь. Весьма вероятно, что ванадий, кобальт, молибден, бор и кремний также имеют общее биологическое значение, однако показать, что тот или иной элемент, присутствующий в сверхмалых количествах, биологически необходим, часто весьма трудно. В отдельных случаях биологическая роль элемента для растений и животных может быть установлена по тем последствиям, которые вызывает его отсутствие в почве. Так, отсутствие меди в почве некоторых районов Австралии вызвало нарушения в нервной системе овец и привело к заболеванию их анемией и к выпадению шерсти. Утверждалось также, что недостаток в почве бора приводит к аномалиям в развитии свеклы и сельдерея и к ухудшению качества [c.7]


    Существует мнение, что все организмы на земле содержат в том ИЛИ другом количестве больщинство известных нам химических элементов. Биологическое значение многих из них еще неизвестно, однако в конце прошлого века стала выясняться исключительная роль ряда элементов в физиологии животных и растений хотя они и содержатся в организме, а также во внешней среде в ничтожнейших количествах, с трудом определяемых обычны.ми приемами химического анализа. К числу таких элементов относится медь, мышьяк, иод, кобальт. [c.180]

    К группе микроэлементов, необходимых для животных, относят медь цинк, марганец, кобальт, молибден и иод. Помимо этих микроэлементов, существует много других, биологическое значение которых мало известно (свинец, ртуть, серебро, кадмий, олово) . Микроэлементов, имеющих отношение к биологическим процессам, насчитывается свыше шестидесяти. [c.421]

    Полезна информация о наиболее распространенных методах определения отдельных микроэлементов. Выберем элементы биологического значения и некоторые токсичные. Среди методов, которыми пользуются для определения меди, на первом месте атомная абсорбция (41 лаборатория из 188), затем идут методы фотометрические (24), полярографические (19), эмиссионный спектральный анализ (19), активационный метод (II), рентгеноспектральный (10). В случае кобальта последовательность похожая атомно-абсорбционная спектроскопия (19), эмиссионный спектральный анализ (17), фотометрические методы (14), полярография (7), активационный анализ (6). При определении микроколичеств железа [c.96]

    Из 102 элементов периодической системы в живых организмах обнаружено не менее 60. Многие из них относятся к металлам и встречаются в живых клетках в виде разнообразных комплексных соединений. Уже давно стало ясно, что металлы, даже встречающиеся в живых тканях в крайне низких концентрациях (так называемые микроэлементы), и их комплексы — это не случайные примеси, а биологически важные компоненты клетки. Множество патологических нарушений, связанных с недостаточностью в клетке железа, меди, цинка, марганца, молибдена, кобальта, не говоря уже о более распространенных в живых тканях металлах кальции, магнии и др., имеют большое значение для биохимии животных и растений, а также для прикладных областей. Исследования биохимических процессов, в которых участвуют ионы металлов, представляют сравнительно новую, но уже вполне определившуюся и быстро развивающуюся область науки, называемую бионеорганической химией. К ней относится также и моделирование структурных и функциональных параметров природных комплексов металлов. Несмотря на значительные различия выполняемых физиологических функций, типов катализируемых реакций и структур реакционных центров, ферменты, являющиеся предметом исследования в бионеорганической химии, объединяет одна особенность— участие ионов металлов или в самом каталитическом акте, или в поддержании третичной или четвертичной структуры белка, необходимой для оптимального функционирования фермента. Это определяет известную общность подходов к изучению ферментов указанной группы и выбор некоторых методов исследования, заимствованных, с одной стороны, из арсенала энзимологии, а с другой - из химии координационных соединений. [c.5]

    Состав природных вод. Природная вода всегда представляет собою раствор большого числа веш,еств, с которыми она соприкасалась или соприкасается. В воде обнаружено до 45 химических элементов в ней присутствуют ионы кальция, магния, хлора, натрия, калия, сульфатные, гидрокарбонатные, карбонатные и другие. Некоторые элементы содержатся в природных водах в очень малых количествах — в долях миллиграмма на литр. Это микроэлементы к ним относятся титан, бор, никель, кобальт, радий. Микроэлементы имеют большое значение для жизни растений и животных, так как они входят в состав биологических катализаторов. [c.104]


    Необходимо отметить, что витамин В]2 является первым известным природным соединением, содержащим кобальт, и содержание последнего в составе витамина отражает, повидимому, биологическое значение кобальта для человека 127а. [c.85]

    В составе животных организмов обнаружено около 45 —50 микроэлементов, но наиболее подробно изучены кобальт, медь, цинк, йод, марганец, железо, играющие особенно важную роль в жизне-деягельности организма. Биологическое значение большого числа микроэлементов, обнаруженных в составе тканей животных, еще точно не установлено или совсем неизвестно. [c.452]

    Примерами соединений, обсуждаемых в этом разделе, являются комплексные соединения органических веществ с железом, никелем, кобальтом или двухвалентной медью. Среди них биологическое значение имеют железопорфириновые соединения, как, например, гемоглобин и гемохромогены, исследованные Паулингом и Корнеллом [59]. В отношении методики измерений к сказанному ранее прибавить нечего. Однако вычисление постоянного магнитного момента из измеренных значений восприимчивости представляет большую сложность. Парамагнитная восприимчивость такого рода комплексов чаще всего обусловлена присутствием одного или большего числа н нарных электронов центрального атома металла. Если в одном атоме имеется несколько таких непарных электронов, то они имеют параллельные -спины. Езли в этих соединениях постоянный магнитный момент зависит только от электронных спинов, как это имеет место в свободных радикалах, то квантовая механика дает возможность 5 сопоставить магнитный момент с числом непарных электронов атома металла п согласно уравнению (7), и парамагнитная вое-. приимчивость на грамматом металла в этом случае просто связана с моментом уравнением (10). Таким образом, из восприимчивости может быть вычислен м мент, а из него—число непарных электронов. Затем на основании теории, развитой главным образом 1 [c.620]

    Комплексные соединения имеют большое значение в /кпзне-деятельности организмов. Так, гемоглобин и хлорофилл, важнейшие в биологическом отношении вещества, относятся к категории внутренних комплексных солей. Известный противодиабетный препарат инсулин, видимо — комплексное производное цинка. Витамин В12 (циапокобаламин), применяемый против анемии, оказался комплексным производным кобальта. Комплексно-связанные металлы — важнейшие составные части некоторых ферментов и, в частности, окислительных ферментов. Так, фенолоксидазы или энзимы, способные окислять фенолы или амины в хиноны, являются производными меди, а каталазы и нероксидазы — производными железа. [c.16]

    Вольтамперометрический метод применяют для определения многих металлов. Кадмий, кобальт, медь, свинец, марганец, никель, олово, цинк, железо, висмут, уран, ванадий и многие другие могут быть определены в рудах, концентратах, сплавах и иных природных и технических объектах. При достаточно различающихся потенциалах полуволны (Д /, > 0,10 В) возможно количественное определение нескольких элементов без предварительного разделения. Например, в аммиачном буферном растворе можно полярографировать смесь кадмия ( = 0,81В) и никеля ( /,= — 1,10 В). Существенное практическое значение имеет вольтамперометрическое определение хромат-, иодат-, мо-либдат-ионов и некоторых других, а также многих органических соединений альдегидов, кетонов, азо- и нитросоединений и т. д. Широко используют полярографический метод для анализа биологически важных материалов крови, сыворотки и т. д. [c.236]

    Протеииы и соединения сульфгидрила отличаются тем, что Ьротеины дают каталитическую волну с ионами закиси и ОКИСИ кобальта, а соединения сульфгидрила дают волну только в присутствии закиси кобальта, но не в присутствии ионов окиси кобальта. Такие каталитические волны имеют большое значение, особенно с биологической точки зрения. [c.204]

    Характеристическая красная и желтая окраски комплексов железа и меди с сидерофилинами не развиваются в отсутствие бикарбоната. Отсюда следует, что этот ион играет главную роль в комплексообразовании металлов с белками [5]. Прямое измерение количества двуокиси углерода, выделяющейся при кислотной денатурации комплексов с железом [42], медью [69], хромом, марганцем и кобальтом [45], подтвердило сделанное ранее предположение Шэйда [5] о том, что на каждый связанный ион металла связывается один бикарбонатный ион. Связывание бикарбоната не является обязательным, и это было продемонстрировано серией исследований связывания металла с трансферрином методом спектроскопии электронного парамагнитного резонанса, которые показали, что специфическое связывание, по крайней мере железа и меди, может происходить и в отсутствие бикарбоната [70]. Образующиеся при этом комплексы были бесцветны и поэтому недетектируемы до появления метода ЭПР. Очевидно, в отсутствие бикарбоната связь железо — белок гораздо слабее, чем в его присутствии, так как при стоянии не содержащего бикарбоната комплекса железа с трансферрином при нейтральных или более высоких значениях pH наблюдается гидролиз железа с образованием нерастворимого гидроксида железа(III). Возможная физиологическая роль этого эффекта будет обсуждена в разделе, посвященном биологическим функциям сидерофилинов. [c.344]


Смотреть страницы где упоминается термин Кобальт биологическое значение: [c.298]    [c.36]    [c.169]    [c.120]    [c.257]   
Основы общей химии Том 3 (1970) -- [ c.121 ]




ПОИСК







© 2024 chem21.info Реклама на сайте