Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молибден превращение

    Добавки металлов к титану по-разному влияют на температуру превращения а->р. К металлам, стабилизирующим а-фазу, относится алюминий. р-Фазу стабилизируют ванадий, ниобий, тантал, молибден. Марганец, железо, никель, медь понижают температуру перехода а-фазы в Р-фазу, но сплавы титана с этими металлами, достигнув определенной, так называемой эвтектоидной температуры, при дальнейшем охлаждении претерпевают превращения, при которых Р-фаза полностью распадается, образуя а-фазу и промежуточную -фазу, обога- [c.86]


    МЕДИ СПЛАВЫ — сплавы на ото ве меди. В виде бронзы применялись за 3000 лет до н. э. В жидком состоянии медь сплавляется со многими элементами, с большинством из них — в любом соотношении. Лишь вольфрам, молибден, осмий, рутений и тантал практически не сплавляются с нер. В твердом состоянии макс. растворимость элементов (в альфа-твердом растворе меди) изменяется в очень широких пределах от сотых и десятых долей процента (хром, ниобий, свинец, ванадий, цирконий) до процентов (серебро, алюминий, мышьяк, бериллий, кадмий, кобальт, железо, магний, кремний, титан и др.) и десятков процентов (индий, олово, цинк). Неограниченно растворяются никель, золото, марганец, палладий и платина. Однако с золотом, марганцем, палладием и платиной М. с. в твердом состоянии претерпевают превращения. С увеличением концентрации легирующего элемента в альфа-твердом растворе меди повышается мех. прочность сплавов их теплопроводность и электропроводность уменьшаются (менее всего при легировании серебром). К вредным примесям относятся висмут, сурьма, свинец и углерод (в медноникелевых сплавах), к-рые приводят к хрупкости. Стойкость против коррозии М. с. зависит от природы легирующего элемента и окружающей среды. Повышают стойкость никель, олово и алюминий. С понижением т-ры раст  [c.780]

    Дегидроциклизацией изооктана при 550° С над молибден-хромовым катализатором получают ксилолы [289], но над окисью хрома получаются олефины [264]. Необходимо отметить протекающую здесь промежуточную изомеризацию [291]. При дегидроциклизации диизобутил- и диизоамил- [279, 284, 285] -декана, пентакозана [276] и керосина [286] образуются ароматические углеводороды. Бутилбензол дает нафталин [279] смесь 1- и 2-ок-тена превращается в о-ксилол ароматические углеводороды получаются при дегидроциклизации компактных олефиновых структур, таких как 2-этил-1-бутен и З-метил-2-пентен. Во всех вышеприведенных превращениях углеводороды, кипящие ниже исходного сырья, не образуются до тех нор, пока преобладают мягкие условия процесса [279]. [c.103]

    Излагаются экспериментальные результаты исследования диаграммы состояния системы цирконий — молибден — титан, проведенного по трем лучевым разрезам при соотношении компонентов Мо Ti=4 1, 1 1, 1 4 от 1 до 40 вес, /о добавок и пяти разрезам с постоянным содержанием титана 10, 15, 20, 25, 30 вес,% в интервале температур 1300—500 С методами микроскопического анализа, измерения твердости и микротвердости. Построены изотермические сечения при температурах 1300, 1200, 1100, 1000, 900, 800, 700, 600 С, лучевые политермические разрезы Мо Ti = 4 I, 1 1, 1 4. Показано существование в тройных сплавах циркония о титаном и молибденом превращения. Установлено, что сплавы [c.274]

    Показано, что при гидрогенизации циклогексана над двусернистым молибденом превращение циклогексана в гексаны протекает через промежуточную стадию образования метилциклопентана. [c.59]

    Молибден является одним из важнейших микроэлементов. Небольшие количества этого металла в почве благоприятно влияют на рост и развитие растений и клубеньковых бактерий. Мо обнаруживается также и в животных тканях, входит в состав многих ферментов, осуществляющих окислительно-восстановительные превращения в клетке. [c.480]

    С железом молибден образует твердые растворы и несколько химических соединений. В цементите растворяется до 1,3% Мо. Повышение его содержания вызывает уменьшение концентрации углерода в эвтектоиде и снижение температуры перлитного превращения. [c.74]

    Окислительные превращения пуринов. Реакцию окисления пуринов (а также птеринов и многих альдегидов) катализирует ксантиноксидаза, содержащая ФАД — две молекулы — и молибден — два атома на моль фермента. Этим ферментом, например, ксантин окисляется в мочевую кислоту [4431 — конечный продукт пуринового обмена [c.564]


    Титан, подобно железу, имеет две аллотропические модификации. В сплавах его с алюминием и такими металлами, как ванадий, молибден, ниобий, хром и другие, происходят превращения, похожие на те, которые описаны для стали. [c.22]

    В сталях с марганцем и молибденом достаточно стабильный аустенит может быть получен при меньшем содержании хрома, так как эти элементы снижают и марганец делает кинетику мартенситного превращения более вялой. Различие в химическом составе фаз может оказывать влияние на коррозионную стойкость стали в соответствии с известными закономерностями влияния хрома на пассивируемость стали в зависимости от потенциала среды и быть причиной избирательной коррозии. [c.32]

    Окисный молибден-висмут-кремневый на плавленном карборунде в присутствии паров воды, 465° С, I NH3 воздух Н О = 1 1 7,5 1. Превращение I в II—62% [631] [c.711]

    Пропилен (I) Акролеин (II), акриловая кислота (III) Никель-молибден-теллуровый паровая фаза, 400 и 424° j 11 Оа HjO (пар) = 10 51 39 (об.), время контакта 5 сек. Превращение I в II — 39 и 29%, в III — 1,6 и 9%. На катализаторе, не содержащем ТеОа, конверсия I в II до 1% [2791] [c.158]

    Катализатор молибден сульфид — кобальт сульфид применялся для превращения циклогексаиа в метилциклопентан при 500° [229]. [c.51]

    Как показано на рис. 14-33, свободный аденин, образующийся в процессе катаболизма нуклеиновых кислот, может быть гидролитически дезаминирован в гипоксантин. Аналогично этому гуанин может быть дезаминирован в ксантин. Ксантиноксидаза — фермент, содержащий молибден (гл. 8, разд. И, 6), окисляет гипоксантин в ксантин и далее в мочевую кислоту. Другая реакция ксантина в некоторых растениях — это превращение в кофеин, являющийся триметилпроизводным. [c.170]

    А.-ф. может существовать в интервале концентраций от О до 100% (напр., сплавы хром—ванадий, празеодим — неодим). Чаще концентрационная область существования А.-ф. ограничена. Прп охлаждении в А.-ф., которые существуют в широких концентрационных пределах, могут происходить превращения упорядочение (напр., в сплаве медь — золото), расслоение на два твердых раствора с одинаковой кристаллической структурой, но разными периодами решеток (напр., в сплаве хром — молибден), образование промежуточных фаз (напр., в сплаве железо — хром). Эти превращения фиксируются рентгенографически (см. Рентгеноструктурный анализ), сопровождаются изменением электропроводности, теплоемкости, температурного коэфф. линейного расширения и др. Если т-ру снижать, в некоторых А.-ф. (напр., на основе кобальта, гадолиния, хрома) могут происходить магн. превращения (фаза из парамагнитной становится ферро-или антиферромагнитной). При охлаждении до гелиевых т-р (около 4К) возможен переход фазы в сверхпроводящее состояние (см. Сверхпроводимость). [c.53]

    Природные ресурсы. В природе встречаются только марганец и рений (в виде соединений). Технеций в природе не встречается, его получают искусственно с помощью ядерных превращений. Содержангге марганца в земной коре составляет 9-10 %, рениЯ 10- %. Важнейшее природное соединенне марганца — пиролюзит МиОо, Рений—один из нанболее редких и рассеянных элемеитов. Он содерл<птся в виде примесей в рудах различных металлов, п частности, в молибдените MoS . [c.544]

    Эксперименты показали, что для процессов, протекающих в блоке бензинирования, достаточно активны следующие катализаторы сульфид вольфрама на активированном алюмосиликате (10 90) и особенно комбинированный катализатор — 0,6% молибдена, 2% хрома, 5% цинка, а остальное — носитель (активированный алюмосиликат). Хром приводит к углублению )асщепления, а молибден — к углублению гидрирования. 1ри 480 °С, 70 МПа и объемной скорости 0,8 т/(мЗ-ч) глубина превращения широкой фракции, получаемой жидкофазной гидрогенизацией каменных углей, составляет 40%. В полученном бензине с к.к. 150—160 °С содержится 50—60% ароматических углеводородов. Комбинированный катализатор сохраняет высокую активность, несмотря на присутствие азотистых соединений в сырье и циркуляционном газе. [c.217]

    Каталитический процесс требует дополнительных затрат, которые должны компенсироваться увеличением скорости реакцииТ снижением температуры или повышением глубины превращения за один проход, а также избирательности, т. е. меньшим образованием легких газов, смолистых веществ или кокса, что, в свою очередь, снижает расход водорода. Многое также зависит от типа применяемого катализатора (алюмосиликатные, алюмоникелевые, алюмомолибденовые, алюмохромовые, никель на кремнеземе и алюмосиликате, никельалюмохромовые, кобальт, хром и молибден на окиси алюминия и промотированная окись железа). [c.292]

    Получение веществ искусственным путем — важная и увлекательная задача химии. Однако в природе имеется много химических превращений, механизмы которых пока неизвестны ученым. Раскрытие этих секретов природы должно принести огромные материальные выгоды. Так, связывание молекулярного азота в химические соединения в промышленности осуществляется в чрезвычайно жестких условиях. Синтез аммиака из азота и водорода происходит при высоком давлении Ктысячи паскалей) и температуре (сотни градусов), а для синтеза оксида азота(И) из азота и кислорода характерна температура около 3000 °С. В то же время клубеньковые бактерии на бобовых растениях переводят в соединения атмосферный азот при нормальных условиях . Эти бактерии обладают более совершенными катализаторами, чем те, которые используют в промышленности. Пока известно лишь, что непременная составная часть этих биологических катализаторов — металлы молибден и железо. Другим чрезвычайно эффективным катализатором является хлорофилл, способствующий усваиванию растениями диоксида углерода также при нормальных условиях. [c.10]

    Превращения в металлических и керамических материалах в результате ядерных реакций при облучении нейтронами приводят к образованию атомов примесей. Как правило, это не очень существенно, за исключением случаев, когда образуются газы (например, при реакции нейтронов с бериллием образуется гелий). Газы в решетке могут накапливаться, образуя пузырьки, и приводить к сильному распуханию [31 ]. Особенно сильное радиационное распухание (свеллинг) наблюдается при делении урана и плутония. Оно является результатом накопления осколков деления, значительная часть которых (около 30% выгоревших атомов) состоит из газовых атомов, в первую очередь криптона и ксенона. Это явление в настоящее время служит главным препятствием, ограничивающим использование металлического ос-урана в качестве топлива в реакторах, где требуются высокая степень выгорания и работа в условиях повышенных температур. В связи с этим охотнее пользуются двуокисью урана (иОа). Двуокись урана — химически довольно стойкое вещество, слабо реагирует с водой, совместима (не вступает в химические реакции) со многими конструкционными материалами (тантал, молибден, нержавеющие стали и др.), выдерживает нагрев до высоких температур. Главным же достоинством плотной спеченной иОа является ее способность довольно прочно удерживать продукты распада урана, в том числе газовые атомы, без значительного изменения внешних размеров. 212 [c.212]

    Кислород вызывает быстрое превращение меркаптанов в дисульфиды. При термическом разложении первичных и вторичных меркаптанов, легко протекающем при температуре выше 300 °С, образуются сероводород и соответствующий алкен. Третичные меркаптаны разлагаются при более низкой температуре. В присутствии алюмосиликатных катализаторов крекинга деканмеркан-тан, например, разлагается при 250 °С с образованием 30% децил-сульфида и децена-1. Разложение ароматических меркаптанов протекает труднее при 300 °С тиофенол лишь медленно разлагается с образованием некоторого количества бензола и тиантрена. Каталитическое гидрирование меркаптанов в присутствии таких катализаторов, как молибден, кобальт, сульфид никеля и молибдена, ведет к образованию соответствующего углеводорода и сероводорода. [c.28]


    Высокотемпературный нагрев при получении биметалла обусловливает взаимную диффузию составляющих сплавов, в данном случае молибдена в сталь и углерода из стали в молибден, что подтверждается результатами металлографического анализа. Из рис. 89 видно, что поверхностные слои стали обезуглерожены, а феррит имеет столбчатое строение. Первое объясняется диффузией углерода в молибден, второе — диффузией молибдена в сталь. Когда в стали достигается такое содержание молибдена, при котором а - 7, превращения не происходит, феррит приобретает столбчатое строение. Темная прослойка между молибденом и железом - карбид (Мо, Ре)бС. Толщина зтой прослойки, как и зоны обезуглероживания, тем больше, чем вьпые температура прокатки, вследствие ускорения диффузионных процессов при повышении температуры. Увеличение толщины хрупкой карбидной прослойки приводит к уменьшению прочности сцепления, что видно из рис. 91 (повышение температуры прокатки снижает прочность сцепления). В дальнейшем перераспределение элементов между слоями будет рассмотрено дополнительно — при описании результатов исследования необходимости (целесообразности) проведения после прокатки термической обработки. [c.94]

    Построение полных диаграмм состояния даже в случае относительно простых тройных систем требует выполнения сложного и трудоемкого эксперимента. Трудности особенно велики при изучении тугоплавких систем, когда температуры плавления сплавов достигают 3000° С и более. Из-за методических трудностей динамические методы (ДТА, изучение зависимостей температура — свойство) выше 2000° С используются сравнительно мало. В то же время, как оказалось, для углеродсодержащих систем (в частности, с молибденом и вольфрамом), как и для металлических, характерны быстропротекающиевысокотемпературные превращения типа мар-тенситных. В этом случае использование метода отжига и закалок для исследования фазовых равновесий при высоких температурах малоэффективно. С другой стороны, даже после длительных отжигов при относительно невысоких температурах (< 1500° С) часто в сплавах не наблюдается состояния термодинамического равновесия. Для правильной интерпретации экспериментальных данных, учитывая столь сложное поведение сплавов, особенно важно знание общих закономерностей взаимодействия компонентов в рассматриваемых системах. Поэтому, наряду с обстоятельными многолетними исследованиями с целью построения полных диаграмм состояния [1, 9, 121, целесообразно выполнять работы, цель которых — сравнительное исследование немногих сплавов многих систем в идентичных условиях, выявление на этой основе общих черт в поведении систем-аналогов [3, 12] и использование полученных результатов при оценке собственных экспериментальных и литературных данных и при планировании новых исследований [4]. [c.161]

    Учитывая известную инертность молекулы азота в различных химических превращениях, в том числе и в реакциях гидрирования, можно оценить, насколько мощным восстановителем является фер-рум-молибденовый энзим. Структура его активного сайта представлена кластером, где один атом молибдена через три сульфидных мостика связан с тремя атомами железа. Последние, в свою очередь, связаны еще с пучком феррум-сульфидно-го содержания — весь этот кластер завязан на белковую цепь донорно-акцептор-ными взаимодействиями через имидазольный (на молибден) и тиольный (на феррум) фрагменты. [c.366]

    При подкисленин раствора с содержанием молибдата натрия 1 моль/кг Н2О (см. рнс. 4, б) молибдат-ион переходит в форму МоО(ОН)5 , которая преобладает в интервале pH 1,2—5,4. При pH 3,3, когда практически весь молибден (VI) в растворе находится в виде МоО(ОН)5 , начинается образование полимерных форм. Этот результат согласуется с литературными сведениями, указывающими на определяющую роль ионов МоО(ОН)5- в процессе образования полимерных форм. Как известно, группы ОН, находящиеся в транс-положении к связям Мо = О, удерживаются слабее остальных, благодаря чему возможно образование димера с кислородным мостиком и далее путем сложных превращений — последующих полимеров. По нашим данным, в солянокислых рас-, творах возможно образование ди-, гепта- и октамолибдатов. [c.23]

    В работе [347] изучена связь кислотно-основных свойств вис-мут-молибден-фосфорного катализатора и степени превращения на вем бутилена и бутадиена-1,3 в малеииовый ангидрид. Ра-осмотре-но взаимодействие ненасыщенных углеводородов (являющихся слабыми оонованиями), продуктов реакции (имеющих кислотные свойства) и кислотно-ооновной поверх носхи катализатора. Показано, что на кислотной поверхиюсти катализатора кислотные продукты реакции стабильны. Поэтому введение в молибдат висмута кислотных добавок (ионов фосфора) увеличивает -селективность окисления бутилена и бутадиена-1,3 в малеиновый ангидрид на кислотной поверхности катализатора ускоряется образование промежуточного л-аллильного комплекса, ведущего дальнейшее окисление. [c.205]

    Ре2(Мо04)з [1017]. См. также [1018—1927] Молибден-железо-кобальтовый окисный (52% Мо, 12,2% Ре, 2,35% Со). Превращение I в II — 93,2% [1028] [c.834]

    Превращение ненасыщенных углеводородов, получаемых в процессе крекинга, в хлориды хлористый водород реагирует с ненасыщенными углеводородами до гептилена, вначале при 70°, а затем при 150° Хлористый цинк, хлористое олово, а также пятихлористый молибден, четыреххлористый уран, пятихлористая сурьма, четыреххлористый вольфрам, четыреххлористый ванадий или четыреххлористый титан 2700 [c.376]

    Окислы молибдена чаще применяются в окислительных процессах, чем окислы хрома, вольфрама и урана. Однако индивидуальная окись молибдена, так же как и окислы остальных металлов VI группы, мало эффективна в реакциях окисления [713, 714, 725, 422]. Значительно более активны сложные катализаторы, включающие в свой состав окислы ванадия, висмута, кобальта, железа. Так, при окислении пропилена в акролеин изучена система MoOs—УгО 1713, 423] и установлено, что твердый раствор МоОз в V2O5 более активен, чем механическая смесь окислов [713]. Селективность по акролеину окисных молибден-ванадиевых катализаторов низкая. Более селективным является фосфомолибдат висмута, нанесенный на силикагель [718]. На этом катализаторе максимальный выход акролеина составляет 60%, а максимальное превращение 56%. [c.581]

    Пропилен, КНз Акрилонитрил, НаО [H N, СНзСК] Окись молибдена на носителе флюид, меньше 3 бар, ниже 500° С [771] Окисный молибден-кобальтовый (промышл.) [772] Фосфомолибдат висмута (промышл.) 380° С, превращение 50%. Выход акрилонитрила — 60%, ацетонитрила — 10—15%, акролеина — 5-10%, НСК — 5-6% [773]. См. также [772, 774] [c.643]

    В простой углеродистой стали Д.-ф. существует в интервале очень высоких т-р, при снижении т-ры превращается в гамма-фазу (аустенит). Превращение дельта—гамма в чистом железе является аллотропическим, в стали — перитектическим (см. Перитектика). Ферритообразующие элементы (напр., хром, молибден, вольфрам), растворяющиеся в феррите и стабилизирующие его, способствуют расширению области существования Д.-ф. и сближению ее с областью альфа-фазы. При определенной их концентрации эти области могут соединиться в область твердого раствора на основе альфа-железа. В некоторых сталях (особенно высокохромистых) часть Д.-ф. сохраняется при охлаждении до комнатной т-ры, что обусловливается выделением Д.-ф. с повышенной стабильностью в обогащенных при кристаллизации хромом осях дендритов. В межосных участках, обедненных хромом и др. ферритообразующими элементами, при снижении т-ры происходит дельта—гамма- превращение, а в осях дендритов Д.-ф. остается. Области Д.-ф., наиболее пересыщенные хромом, служат центрами зарождения сигма-фазы, охрупчиваю-щей сталь. Д.-ф. наблюдается в нержавеющих сталях и жаропрочных сталях (хромоникелевых), где в процессе длительных выдержек при т-ре 600—800° С также распадается с образованием сигма-фазы. Вследствие небольшой прочности феррита при высокой т-ре Д.-ф. снижает жаропрочность сталей. [c.324]

    МАРТЕНСИТНОСТАРЁЮЩАЯ СТАЛЬ — сталь, высокая прочность к-рой достигается в результате превращения аустенита в мартенсит и последующего старения мартенситной основы. Применяется с 60-х гг. 20 в. Основой безуглеродистых М. с. (< 0,03% С) является железо, легированное никелем (6— 20%). Старение мартенсита происходит в интервале т-р 350—650° С при дополнительном легировании стали титаном, бериллием, алюминием, марганцем, молибденом, вольфрамом, ванадием, кремнием, медью или ниобием. При одинаковом атомном содержании элементов наибольшее упрочнение в процессе старения вызывает легирование титаном, бериллием, алюминием и наименьшее — молибденом, ниобием и кремнием. Легирование кобальтом пе приводит к дисперсионному твердению мартенсита. Наличие кобальта (> 5—7%) и никеля О 12—15%) при т-ре 350—450° С вызывает образование ближнего или дальнего (при > 18— 20% Со) порядка типа железо — кобальт, что способствует упрочнению стали. Кроме того, кобальт, уменьшая растворимость молибдена, вольфрама и ванадия в альфа-железе, [c.773]


Смотреть страницы где упоминается термин Молибден превращение: [c.20]    [c.135]    [c.105]    [c.238]    [c.10]    [c.23]    [c.287]    [c.94]    [c.256]    [c.71]    [c.836]    [c.87]    [c.195]    [c.202]    [c.578]    [c.430]    [c.506]   
Основы общей химии Том 3 (1970) -- [ c.360 ]




ПОИСК







© 2025 chem21.info Реклама на сайте