Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мышьяк связь с углеродом

    В последние годы описаны и изучаются многочисленные реакции солей фосфористой, тиофосфористой и фосфинистых кислот с различными электрофильными реагентами, не содержащими связи углерод —галоид (эфирами серной кислоты, эфирами сульфокислот, солями четвертичного аммония, тио-цианатами и др.)- При этом могут образоваться не только связи углерод—фосфор, но и азот—фосфор, мышьяк—фосфор, сера—фосфор. [c.44]

    Свойства С. с. Связь сурьмы с углеродом в С. с. менее прочна, чем связь мышьяка с углеродом в его органич. соединениях. В С. с. сравнительно легко происходит перераспределение радикалов, папр.  [c.563]


    На основании проделанной работы очевидно, что илиды мышьяка являются значительно более сильными нуклеофилами, чем илиды фосфора. Это подтверждается и тем, что меркурированные соли арсония практически не диссоциируют в диметилсульфоксиде на сулему и илид, в отличие от аналогичных солей фосфония. Очевидно, что особая основность и нуклеофильность илидов мышьяка связана с относительно малой ролью атома мышьяка в распределении отрицательного заряда молекулы. Это объясняется малой электроотрицательностью атома мышьяка и, возможно, трудностью эффективного перекрывания р-орби-талей углерода с d-орбиталями мышьяка вследствие большого объема последнего. [c.71]

    Ароматические металлоорганические соединения мышьяка, сурьмы и висмута уже в течение длительного времени привлекают к себе внимание исследователей. Это обусловлено, с одной стороны, интересными химическими свойствами металлоорганических соединений подгруппы мышьяка, которые способны вступать в разнообразные реакции без нарушения связи углерод — металл, с другой стороны, — их практическим применением, особенно в медицине. [c.147]

    В качестве примера смешанной формы связей (металлической и ковалентной) можно указать на графит атом углерода в реш( тке графита связан с тремя соседними ковалентной связью, а четвертый электрон каждого атома является общим для всего атомного слоя, обусловливая электропроводность графита. Смешанные связи встречаются также в мышьяке, висмуте, селене и других простых веществах. Чисто металлическая связь характерна только для некоторых металлических монокристаллов. [c.11]

    Основные характеристики некоторых, наиболее широко употребляемых полупроводниковых материалов приведены в табл. 34. Общим свойством всех указанных материалов является ковалентный или близкий к ковалентному характер связей, реализуемых в их кристаллах. Ширина запрещенной зоны зависит от энергии этих связей и структурных особенностей кристаллической решетки полупроводника. У полупроводников с узкой запрещенной зоной, таких, например, как серое олово, черный фосфор, теллур, заметный перенос электронов в зону проводимости возникает уже за счет лучистой энергии, в то время как для полупроводниковых модификаций бора и кремния требуется довольно мощный тепловой или электрический импульс, а для алмаза II — даже облучение потоками микрочастиц большой энергии или у-облучение. Лишь некоторые из полиморфных форм кристаллов обладают полупроводниковыми свойствами. Так, полупроводниковый эффект наблюдается лишь у одной из трех возможных полиморфных форм кристаллических фосфора и мышьяка и лишь у двух из четырех кристаллических модификаций углерода. [c.311]

    Мягкие кислоты связывают мягкие основания за счет ковалентных связей, жесткие кислоты связывают жесткие основания за счет ионной связи с образованием устойчивых соединений. Это обстоятельство используется в практических целях. В частности, она объясняет, почему алюминий встречается в природе в виде оксида, гидроксида и силикатов, кальций —в виде карбоната медь, ртуть — в виде сульфидов. Металлы переходных элементов VIH группы периодической системы, как мягкие кислоты, катализируют реакции, в которых принимают участие умеренно мягкие основания (оксид углерода). Другие более мягкие основания (соединения мышьяка и фосфора) служёт каталитическими ядами, так как они образуют более прочные соединения с этими металлами и блокируют их активные центры. Этим же объясняется ядовитость СО для человека. СО образует с Ре (II) гемоглобина крови более устойчивое соединение, чем кислород. Аналогичную роль играют ионы тяжелых металлов (РЬ +, Hg + и др.), которые, взаимодействуя с SH-группами физиологически важных соединений, выключают их функцию. [c.287]


    Неметаллы, как правило, являются диэлектриками. При смычных условиях они находятся либо в виде двухатомных (галогены, водород, азот, кислород) и одноатомных молекул (благородные газы), либо в виде атомных кристаллов (сера, фосфор, углерод, селен). Промежуточное положение между металлами и неметаллами занимают полуметаллы (бор, кремний, германий, мышьяк, сурьма, теллур). Для них характерны свойства металлов и неметаллов. Как правило, они имеют кристаллические атомные решетки с ковалентной связью. Многие из них являются проводниками. [c.246]

    У церия плавление сопровождается переходом к более плотной упаковке атомов и увеличением плотности на 2,5%. Плавление углерода, кремния, галлия, германия, мышьяка, сурьмы, теллура, висмута связано с большими изменениями их строения и свойств. Описание этих изменений имеется в гл. X. С ними связаны высокие значения [c.285]

    В первом разделе данной главы описаны некоторые свойства водорода, углерода, азота, фосфора, мышьяка, сурьмы, (висмута, кислорода, серы, селена, теллура, фтора, хлора, брома и иода. Последующие разделы посвящены их. соединениям между собой, в частности соединениям, в которых они проявляют нормальную валентность и связаны одинарными связями. Соединения неметаллических элементов с кислородом рассмотрены в следующей главе. [c.172]

    Этот метод применяют почти исключительно для получения комплексных соединений с мостиками из тиоловых атомов серы путем взаимодействия с производными карбонилов металлов. Известно очень немного аналогичных реакций фосфинов. Имеется несколько примеров расщепления связей сера — углерод и теллур — углерод с образованием мостиковых комплексов. Имеется также один пример расщепления связи мышьяк — углерод. [c.277]

    Рентгенофлуоресцентный метод особенно эффективен для определения мышьяка в материалах, основу которых составляют легкие элементы. В связи с практически полным отсутствием мешающего влияния водорода, углерода и кислорода высокая чувствительность определения мышьяка обеспечивается в случае анализа органических веществ. В связи с этим рентгенофлуоресцентный [c.98]

    Многие пики можно исключить из числа пиков возможных молекулярных ионов просто на основании разумных структурных требований. В этом отношении часто очень полезно азотное правило . Оно утверждает, что молекула с четным молекулярным весом либо не должна содержать азот, либо число атомов азота должно быть четным нечетный молекулярный вес требует нечетного числа атомов азота. Это правило справедливо для всех соединений, содержащих углерод, водород, кислород, азот, серу и галогены, а также многие другие реже встречающиеся атомы, такие, как фосфор, бор, кремний, мышьяк и щелочноземельные элементы. Полезным выводом является утверждение, что простой разрыв (без перегруппировки) ординарной связи дает осколочный ион с нечетной массой из молекулярного иона с четной массой и, наоборот, осколочный ион с четной массой образуется из молекулярного иона с нечетной массой. Для этого вывода существенно также, что такой осколочный ион должен содержать все атомы азота (если они вообще имеются) молекулярного иона. Рассмотрение картины распада в сочетании с другой информацией будет также способствовать идентификации пиков молекулярных ионов. Следует помнить, что приложение А содержит брутто-формулы как осколков, так и молекул. [c.39]

    Существуют природные соединения, содержащие связь углерод —металл. Хотя большинство металлоорганических соединений нестабильно в водной среде, исследование механизма действия витамина В12 6.86 (см. разд. 6.12.4) выявило, что живые организмы могут использовать реакции металлоорганической химии для решения своих метаболических проблем при функционировании кобольтосодержащих ферментов в качестве промежуточных соединений образуются кобальтоорганические вещества. Что же касается более стабильных метаболитов со связями углерод — металл, то в природе встречаются только простейшие. В последнее время выяснилось, что процесс биометилирования, показанный выше для мышьяка, имеет более широкое распространение. [c.624]

    Наличие непосредственной связи между атомом мышьяка и углеродом алкильного остатка в соединениях этого ряда устанавливается легкостью восстановления алкилмышьяковых кислот до соответствующих арсйнов, для которых наличие подобной связи доказано. Арсины в свою очередь легко превращаются окислением в соответствующие кислоты  [c.56]

    Среди элементов, которые могут служить донорами электронов, чаще всего встречаются кислород, азот т сера реже в этой роли выступают фосфор, мышьяк и селен. Соединения со связью углерод — металл обычно относятся к классу металлоорганических соединений, за исключением цианидных комплексов, в которых все же чаще встречается координационная св1язь между азотом и металлом. [c.145]

    Сырой (необработанный) элементарный мышьяк получают восста(гов-лением его оксида углеродом или обжигом сульфидов до оксидов с последующим их восстановлением. Получение ультрачистого мышьяка связано главным образом с производством полупроводниковых арсепидов с большой подвижностью носителей. Принципиально ультрачистый мышьяк может быть получен следующими методами  [c.278]

    СИЛ, поскольку увеличивается расстояние С—X (1,87, 1,98 и 2,18 А) [15]. Одновременно электроотрицательность X также уменьшается в этом ряду (2,1, 2,0 и 1,9 по Полингу) [16]. Однако в дополнение к этому и в противоречии с выводами Дёринга следует также ожидать уменьшения стабилизации карбаниона в том же ряду за счет уменьшения перекрывания 2р-орбитали карбаниона с вакантными -орбиталями гетероатома. Действительно, объемы двух участвующих в связи атомов (углерод — фосфор, углерод — мышьяк и углерод — сурьма) различаются все больше, и главное квантовое число используемых -орбита-лей все увеличивается, вследствие чего должна уменьшаться эффективность 2р — я-перекрывания. Так что кажется несколько преждевременным, особенно ввиду малого количества относящихся к делу фактов, делать выводы о том, что расширение валентной оболочки остается постоянным при переходе от фосфора к сурьме. [c.306]

    Реакции обмена. При взаимодействии галогенидов различных сильно электроноакцепторных и электронодонорнцх элементов с ароматическими углеводородами образуется связь углерод — металл. Эту реакцию можно использовать как препаративный метод для получения фенилбордихлорида (пропусканием паров смеси треххлористого бора и бензола над платино-палладиевым катализатором при температуре 500—600° [12]) и фенилдихлор-арсина (нагреванием смеси паров бензола и треххлористого мышьяка [13]). Арилгалогениды фосфора и алюминия можно получить аналогичным способом. Установлено, что в хорошо известной реакции Фриделя — Крафтса, в которой ароматические углеводороды алкилируются под влиянием каталитического действия хлористого алюминия, в качестве промежуточных продуктов образуются арилалюминийгалогениды. Присутствием аналогичных промежуточных продуктов можно объяснить каталитическую активность галогенидов бора и других сильно электроноакцепторных элементов, ускоряющих реакции углеводородов. [c.65]

    Д. Купер в 1964 г. подробно обосновал диагональную закономерность правилами Фаянса, которые гласят, что возникновение ковалентных связей наблюдается, когда число электронов, отдаваемых атомом или образующих допорпо-акцепторные связи, достаточно велико. Кроме того, образованию ионных связей благоприятствуют большие размеры катиона и малые размеры аниона. Сочетание этих правил предсказывает эффект, наблюдаемый по диагональному направлению. Элементы с инертными электронными парами ртуть, индий, германий, мышьяк, сера расположены по второй диагонали слева внизу — направо вверх. По термодинамическим свойствам водород ближе всего к углероду. Вследствие этого связь С — Н менее полярна, чем все связи углерода с другими элементами. [c.112]


    При 0. 1,ЗЪ ( R = 4,48) Т)дц= + Ез.Веоьма близка к = 4,48 рефракция связи углерод - мышьяк (4,54),следовательно,должно быть + Е, что при  [c.57]

    ПОЛУПРОВОДНИКИ — вещества с электронной проводимостью, величина электропроводности которых лежит между электропроводностью металлов и изоляторов. Характерной особенностью П. является положительный температурный коэффициент электропроводности (в отличие от металлов). Электропроводность П. зависит от температуры, количества и природы примесей, влияния электрического поля, света и других внешних факторов. К П. относятся простые вещества — бор, углерод (алмаз), кремний, германий, олово (серое), селен, теллур, а также соединения — карбид кремния, соединения типа filmen (инднй — сурьма, индий — мышьяк, галлий — сурьма, алюминий — сурьма), соединения двух или трех элементов, в состав которых входит хотя бы один элемент IV—VII групп периодической системы элементов Д. И. Менделеева, некоторые органические вещества — полицены, азоаромати-ческие соединения, фталоцианин, некоторые свободные радикалы и др. К чистоте полупроводниковых материалов предъявляют повышенные требования, например, в германии контролируют примеси 40 элементов, в кремнии — 27 элементов и т. д. Тем не менее некоторые примеси придают П. определенные свойства и тип проводимости, а потому и являются необходимыми. Содержание примесей не должно превышать 10 —Ш %. П. применяются в приборах в виде монокристаллов с точно определенным содержанием примесей. Применение П. в различных отраслях техники, в радиотехнике, автоматике необычайно возросло в связи с большими преимуществами полупроводниковых приборов — они экономичны, надежны, имеют высокий КПД, малые размеры и др. [c.200]

    По химическому составу полупроводники весьма разнообразны. К ним относятся элементарные вещества, как, например, бор, графит, кремний, германий, мышьяк, сурьма, селен, а также многие оксиды ( uaO, ZnO), сульфиды (PbS), соединения с индием (InSb) и т. д. и многие соединения, состоящие более чем из двух элементов. Известны и некоторые органические соединения обладающие полупроводниковыми свойствами. Таким образом, к полупроводникам относится очень большое число веществ. Обусловлены полупроводниковые свойства характером химической связи (ковалентным, или ковалентным с некоторой долей ионности), типом кристаллической решетки, размерами атомов, расстоянием между ними, их взаиморасположением. Если химические связи вещества носят преимущественно металлический характер, то его полупроводниковые свойства исключаются. Зависимость полупроводниковых свойств от типа решетки и от характера связи ясно видна на примере аллотропных модификаций углерода. Так, алмаз — типичный диэлектрик, а графит — полупроводник с положительным температурным коэффициентом электропроводности. То же у олова белое олово — металл, а его аллотропное видоизменение серое олово — полупроводник. Известны примеры с модификациями фосфора и серы. [c.298]

    В связи с принятым делением простых веществ на металлы и неметаллы можно, отметить, что в периодах слева направо усиливаются неметаллические свойства. В группах заметно увеличение неметаллических свойств снизу вверх (наиболее ярко это проявляется в VI, V ll VIII группах). Таким образом, первые группы периодической системы элементов не содержат неметаллов (если не считать Is-элементов, т. е. водород и гелий). Bill группе к неметаллам относится один бор, в IV группе — углерод и кремний, в V группе — азот, фосфор, мышьяк, в VI группе — кислород, сера, селен, теллур, в VII — фтор, хлор, бром, иод, астат. Простые вещества элементов VIII группы при обычных условиях газообразны, а в конденсированном состоянии образуют ковалентные кристаллы, которые уже при незначительном нагревании легко плавятся, а затем из жидкого состояния переходят в газообразное. [c.118]

    При образовании гомоатомных соединений (простых веществ) все эффекты, связанные с разностью электроотрицательностей взаимодействующих атомов, исключаются. Поэтому в простых веществах не реализуются полярные, а тем более преимущественно ионные связи. Следовательно, в простых веществах осуществляется лишь металлическая и ковалентная связь. Следует при этом учесть и возможность возникновения дополнительного ван-дер-ваальсов-ского взаимодействия. Преобладание вклада металлической связи приводит к металлическим свойствам простого вещества, а неметаллические свойства обусловлены преимущественно ковалентным взаимодействием. Для образования ковалентной связи взаимодействующие атомы должны обладать достаточным количеством валентных электронов. При дефиците валентных электронов осуществляется коллективное электронно-атомное взаимодействие, приводящее к возникновению металлической связи. На этой основе в периодической системе можно провести вертикальную границу между элементами П1А- и 1УА-групп, слева от которой располагаются элементы с дефицитом валентных электронов, а справа — с избытком. Эта вертикаль называется границей Цинтля Ее положение в периодической системе обусловлено тем, что в соответствии с современными представлениями о механизме образования ковалентной связи особой устойчивостью обладает полностью завершенная октетная электронная 5 /гр -конфигурация, свойственная благородным газам. Поэтому для реализации ковалентного взаимодействия при образовании простых веществ необходимо, чтобы каждый атом пмел не менее четырех электронов. В этом случае возможно возникгювение четырех ковалентных связей (5/) -гибридизация ), что и реализуется у элементов 1УА-группы (решетка типа алмаза у углерода, кремния, германия и а-олова с координационным числом 4). Если атом имеет 5 валентных электронов (УА-группа), то до завершения октета ему необходимо 3 электрона. Поэтому он может иметь лишь три ковалентные связи с партнерами (к. ч. 3). В этом случае кристалл образован гофрированными сетками, которые связаны между собой более слабыми силами. Получается слоистая структура, в которой расстояние между атомами, принадлежащими одному слою, намного меньше, чем между атомами различных слоев (черный фосфор, мышьяк, сурьма)  [c.29]

    Если учесть, что разница между полупроводниками и диэлектриками только количественная, то можно сказать, что наличие только металлической связи между атомами исключает полупроводниковые свойства вещества (из этого не надо делать вывода о том,что в обычных условиях металлическая составляющая связи в полупроводниках полностью отсутствует). Для полупроводников типичны ковалентные и ионно-ковалентные связи. Музер и Пирсон отмечают, что в составе всех известных неорганических полупроводников всегда есть неметаллические атомы какого-либо из элементов IVA — VIIА подгрупп. Зонная теория не объясняет этого факта. Собственно полупроводниками являются элементарные вещества этих групп (углерод, кремний, германий, а-олово, некоторые модификации 4юсфора, мышьяка, сурьмы, селен, теллур). Сюда надо отнести и бор. Некоторые черты полупроводниковых свойств имеют сера и иод. Слева и снизу от этих элементов в системе находятся металлы, а выше и правее — типичные диэлектрики. [c.255]

    Среди веществ с валснтпы.мп связями частиц в кристаллах есть вещества со слоистыми решетками. К их числу относятся графит, гексагональные мышьяк, сурьма и висмут, сложное вещество СсИг и др. В решетке графита рис. 49) атомы углерода располагаются слоями в каждом слое они размеще 1Ы в вершинах правильных [c.164]

    Диапазон геометрических структур, для описания которых полезно обращаться к многогранникам, чрезвычайно широк. Так, например, правильный тетраэдр симметрии одинаково подходит как для молекулы тетрамера мышьяка, Аз4, так и для молекулы метана, СН (рис. 3-27). Однако в их строении имеется одно существенное различие. Оно состоит в том, что в молекуле все четыре атомных ядра, входящих в ее состав, расположены в вершинах правильного тетраэдра, ребрами которого служат химические связи между атомами мышьяка. В молекуле же метана имеется центральный атом углерода, от которого четыре химические связи направлены к четырем вершинам тетраэдра, где находятся атомы водорода. В данном случае ребра тетраэдра уже не являются химическими связями. [c.119]

    В литературе описано большое число различных роданпроизводных фосфора, мышьяка, ртути, свинца, висмута и многих других элементов. В этих соединениях, имеющих общую формулу R Me(S N) ., родангруппа связана не с углеродом, а с другим элементом, поэтому получение такого рода веществ в насто щем очерке не затрагивается. Такие соединения скорее носят солеобразный характер, и их целесообразно описать при соответствующем классе веществ. [c.33]

    Азот стоит несколько особняком среди элементов V группы периодической системы. Он является самым электроотрицательным среди них и характеризуется двумя наиболее важными особенностями в структурном отношении. Во-первых, для образования связей азот может использовать только четыре орбитали -оболочки, так что он формирует максимум четыре тетраэдрические связи (например, в ЫН4+, замещенных аммонийных ионах и аминоксидах КзМ-О), а в галоген- и оксопропзвод-ных — только три связи, причем в последних соединениях связь часто имеет кратный характер. Это вторая его отличительная особенность подобно своим соседям по периоду — углероду и кислороду, азот проявляет сильную тенденцию к образованию кратных связей. Он является единственным элементом V группы, который существует при обычных температурах в виде двухатомной молекулы (Ы = Ы) и сохраняет эту форму в жидком и твердом состояниях, предпочитая ее системе полимери-зованных однократных связей, характерных для фосфора н мышьяка. (О твердом N2 см. гл. 29.) Наблюдается интересное различие между прочностью (кДж/моль) ординарных и кратных связей азот — азот, азот — углерод и углерод — углерод  [c.543]

    Соединения, в которых содержится мышьяк, непосредственно связанный с атомом углерода, образуют отдельный класс элементоорганических соединений — мышьякорганические соединения [308, 433]. К органическим соединениям мышьяка иногда относят также соединения, в которых мышьяк не образует непосредственной связи с атомами углерода, например трибутиларсенат (С4НдО)зАзО. [c.19]


Смотреть страницы где упоминается термин Мышьяк связь с углеродом: [c.254]    [c.534]    [c.534]    [c.11]    [c.33]    [c.365]    [c.305]    [c.97]    [c.280]    [c.572]    [c.242]    [c.169]    [c.410]    [c.175]    [c.623]   
Основы общей химии Том 3 (1970) -- [ c.280 ]




ПОИСК





Смотрите так же термины и статьи:

Углерод связи



© 2025 chem21.info Реклама на сайте