Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Никель гидратации энергия

    При таком допущении энергия активации должна быть функцией энергии гидратации ионов и работы их выхода из металла, возрастая с увеличением разности между ними. На основании этого следовало бы ожидать, что для инертных металлов энергия гидратации больше, а работа выхода меньше, чем для нормальных металлов. Однако имеющиеся данные (см. табл. 22.3) не подтверждают такого предположения так, для цинка и никеля значения энергии гидратации и работы выхода почти одинаковы, но цинк выделяется со значительно меньшим перенапряжением, чем никель. Это отнюдь не означает, что прочность ионов в растворе и в металле не играет никакой роли, ее просто нельзя учесть подобным примитивным способом. [c.465]


    Уравнение (22) многократно подтверждалось экспериментально, но часто объяснялось по-другому. Оно применимо для случая, когда скорость электродного процесса определяется не диффузией, затруднениями при росте кристаллов или сопутствующим химическим процессом, а переходом ионов через границу. Это требование выполняется, например, при выделении никеля, водорода и хлора на соответствующих электродах. В других случаях, таких, как выделение ртути и свинца, кадмия, цинка (последние — только при соскабливании с электрода), скорость определяется диффузией к границе это означает, что энергетический горб между положениями покоя иоион настолько низок, что щ иц кТ. В таком случае число переходов в секунду через квадратный сантиметр можно принять приблизительно равным газокинетическому числу ударов. Если гидратация ионов имеет преимущественно электростатический характер, то подобный низкий энергетический порог вероятен вследствие значительного дальнодействия соответствующих сил. Если, однако, добавляются еще и другие — значительные по величине — сипы взаимодействия, увеличивающие крутизну кривой потенциальной энергии, то и активационный порог оказывается выше. [c.77]

    Существует линейная зависимость между теплотами гидратации ионов металлов, из которых вычтены части, обусловленные стабилизацией в Поле лигандов, и потенциалами ионизации, исправленными таким образом, чтобы они относились к одному и тому же основному состоянию. Это показывает, что более простое соответствие, которого искали Ирвинг и Уилльямс, в действительности не имеет места [108, 217]. Теория поля лигандов предсказывает последовательность изменений энтальпии от хрома до цинка. В первом приближении можно предположить, что рассмотрение методом теории поля лигандов, применимое для суммарного изменения энтальпии А может быть применено также для рассмотрения изменений АЯ в отдельных последовательных стадиях, а также при отсутствии данных по энтальпиям — к изменениям свободной энергии, Константы устойчивости с введением поправок на стабилизацию в поле лигандов могут быть оценены путем линейной интерполяции между значениями для кальция, марганца и цинка. Величины стабилизации в поле лигандов представляют собой разности между экспериментальными и исправленными значениями [32, 217]. Вычисленные таким путем величины стабилизации в поле лигандов приведены в табл. 9. Стабилизации для отдельных стадий для комплексов железа, кобальта и никеля и, следовательно, суммарные стабилизации для присоединения трех этилендиаминовых лигандов постепенно возрастают, причем приближенно выполняется предсказанное соотношение 1 2 3. Спектроскопическое значение [c.52]

    До сих пор остается недостаточно ясным, почему существует такое большое различие в величине и природе металлического перенапряжения для нормальных и для инертных металлов и с какими свойствами металлов (или растворов) оно связано. Была сделана попытка объяснить эти явления различным соотношением между прочностью связи ионов в растворе и в кристаллической решетке нормальных и инертных металлов. Подобное предположение эквивалентно допущению того, что в разряде участвуют ионы в той форме, в какой они присутствуют в растворе, и что разряд переводит ион непосредственно в его конечное положение в решетке металла. При таком допущении акт разряда совпадает с суммарной электродной реакцией выделения металла, а отвечающие ему энергетические изменения соответствуют диаграмме Герни (см. рис. 29). Минимум левой потенциальной кривой относится при этом к устойчивому положению иона в поверхностном слое кристаллической решетки металла и определяется работой его удаления У. Минимум правой потенциальной кривой отвечает устойчивому положению иона в растворе и в случае простых ионов определяется его энергией гидратации Н. Энергия активации разряда растет при увеличении энергии гидратации иона и уменьшении работы его удаления. На основании этого следовало ожидать, что для нормальных металлов энергия гидратации их ионов в растворе меньше, а работа удаления ионов из решетки больше, чем для инертных металлов. Однако опытные данные не подтверждают этого предположения. Например, из табл. 49 следует, что разность У — Н так же, как абсолютные величины энергии гидратации и работы удаления, почти одинакова для цинка и для никеля, хотя цинк выделяется со значительно меньшим перенапряжением, чем никель. Это не значит, что прочность связи ионов в растворе и в металле не играет никакой роли. Однако этот фактор нельзя учесть простым сопоставлением величин Я и У. [c.436]


    Образование положительных ионов различных элементов, как правило, представляет собой эндотермический процесс. Так, при 0°К работа ионизации составляет от 89 ккал для цезия до 565 ккал для гелия [9]. Для во дорода эндотермический тепловой эффект при 25°С составляет для образования молекулярного иона 357,15 ккал и для образования атомного иона Н" 367,88 ккал [10]. Картина меняется в водных средах, главным образом, вследствие значительного сродства соответствующих ионов к раст ворителю. Так, теплота гидратации протона составляет величину порядка 276 ккал 111]. Существенную роль играет также и энергия адсорбционной связи водорода с поверхностью различных металлов, которая составляет 30ккал для платины, 31 ккал для никеля и45/сшл для вольфрама [12]. Сродство протона к различным металлам также может достигать значительных величин. [c.124]


Смотреть страницы где упоминается термин Никель гидратации энергия: [c.436]    [c.81]    [c.151]    [c.574]   
Основы общей химии Том 3 (1970) -- [ c.241 ]




ПОИСК





Смотрите так же термины и статьи:

Энергия гидратации



© 2024 chem21.info Реклама на сайте