Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеризация элементов

    В литературе появилось огромное количество публикаций об алкилирующих каталитических системах на основе цеолитов. Разноречивы мнения в оценке активных центров и механизма реакции алкилирования бензола пропиленом на цеолитсодержащих катализаторах, а также недостаточное изучение кинетики реакции в определенной мере сдерживают реализацию процесса в промышленности. Кроме того, при алкилировании бензола пропиленом на цеолитах и цеолитсодержащих катализаторах протекают побочные реакции образование полиалкилбензолов, крекинг изопропилбензола с образованием этилбензола и толуола, изомеризация изопропилбензола в н-пропилбензол и полимеризация пропилена. Наличие этих примесей ухудшает количество товарного изопропилбензола, ингибирует процесс его окисления. Переалкилирование полиалкилбензолов протекает при более высоких температурах и давлениях, чем алкилирование. Перспективными представляются цеолитсодержащие катализаторы с редкоземельными элементами СаНУ, на которых переалкилирование протекает в условиях реакции алкилирования. Побочные реакции снижают селективность цеолитсодержащих катализаторов, вызывает их дез- [c.252]


    Отдельные элементарные процессы практически удалось осуществить [8—11] без катализаторов (термическое алкилирование, термополимеризацию, термическое дегидрирование, термическое деалкилирование, различные формы термического распада) и с ними (алкилирование на холоду парафиновых и ароматических углеводородов олефиновыми, полимеризацию, в том числе димеризацию и сополимеризацию, гидрирование, низкотемпературный крекинг, изомеризацию и т. п.). Но чисто термические процессы требуют высоких температур (термический синтез ароматических углеводородов) либо высоких давлений (термическая полимеризация, алкилирование и гидрирование) и в указанных условиях сопровождаются значительными потерями исходного сырья за счет глубоко идущих реакций распада (вплоть до распада на элементы) и глубокого уплотнения (до образования коксообразных веществ). [c.42]

    Неравновесные же минимумы во многих случаях связаны, конечно, с полимеризацией элемента (или образованием коллоидных частиц гидроокисей). Такие минимумы наблюдались при экстракции внутрикомплексных соединений циркония, ниобия, тантала, т. е. элементов, весьма склонных к гидролизу и полимеризации. Полимерные формы реагируют с экстракционным реагентом намного медленнее, и при тех значениях pH, при которых образование полимеров особенно вероятно, экстракция может снижаться за [c.57]

    При окислении бензинов происходит накопление в них смолистых веществ, образующихся в результате окислительной полимеризации и конденсации продуктов окисления. На начальных стадиях окисления содержание в бензине смолистых веществ невелико, и они полностью растворимы в нем. По мере углубления процесса окисления количество смолистых веществ увеличивается, и снижается их растворимость в бензине. Накопление в бензинах продуктов окисления резко ухудшает их эксплуатационные свойства. Смолистые вещества могут вьшадать из топлива, образуя отложения в резервуарах, трубопроводах и др. Окисление нестабильных бензинов при нагревании во впускной системе двигателя приводит к образованию отложений на ее элементах, а также увеличивает склонность к нагарообразованию на клапанах, в камере сгорания и на свечах зажигания. [c.23]

    На рис. 1 наглядно показано, что элементы, способные к образованию полимеров, расположены между металлами и элементами, не образующими полимеров. К числу способных к полимеризации элементов относятся бор, углерод, кремний, германий, фосфор, сера, мышьяк, сурьма, селен, висмут и теллур. [c.402]

    Соотнощение присоединений в положениях 1,2 и 1,4 можно установить озонолизом, окислением гидроперекисью бензоила или при помощи инфракрасной спектроскопии. При радикально полимеризации около 75% основных структурных элементов присоединяется в положение 1,4 с повыщением степени конверсии разветвление макромолекулы увеличивается. Разветвление вызывается не только реакциями переноса растущих цепей, но и сополимеризацией винильных групп 1,2-присоединенных основных структурных элементов макромолекулы с бутадиеном. Для того чтобы предотвратить такое разветвление, применяются регуляторы , являющиеся переносчиками цепей, например  [c.938]

    Наряду с реакциями окисления протекают также реакции деструкции (в результате чего появляются низкомолекулярные вещества, например кислоты), реакции конденсации и полимеризации, ведущие к возрастанию молекулярной массы конечных продуктов — смол. Образующиеся при окислении топлива смолы, так же как и нефтяные смолы, переходящие в топливо при переработке нефти, содержат углерод, водород, кислород, серу и азот. При этом доля двух последних элементов в продуктах окисления и уплотнения больше, чем в исходном топливе. Это указывает на существенную роль неуглеводородных органических соединений в образовании осадков и отложений. [c.52]


    Катализаторы. С тех пор как в 1957 г. в патенте фирмы Дюпон [3] была впервые упомянута возможность полимеризации циклоолефинов (в том числе и циклопентена) с раскрытием кольца, в периодической и патентной литературе появились сотни публикаций, посвященных этому вопросу. При всем разнообразии предложенных различными авторами каталитических систем у них имеется одна общая черта необходимость применения переходного металла IV—Vni групп периодической системы элементов. Элементы, обладающие каталитической активностью в процессах полимеризации циклоолефинов с раскрытием кольца, приведены ниже  [c.318]

    Чаще всего для полимеризации используют многокомпонентные каталитические системы, в которые наряду с соединением переходного металла входит сокатализатор — органическое производное или галогенид элемента I—IV групп периодической системы и активатор — соединение, содержащее атомы кислорода, галогена, азота, фосфора или серы. Более подробные сведения о составе каталитических систем, применяемых для полимеризации циклоолефинов, можно найти в недавно опубликованном обзоре [5]. [c.319]

    Атом водорода, соединенный с атомом сильно электроотрицательного элемента, способен к образованию еще одной химической связи. Эта связь называется водородной. Наличие водородных связей приводит к заметной полимеризации воды, фтороводорода, многих органических соединений. Например, [c.70]

    Тепловыделяющие элементы изготавливают методом порошковой металлургии путем смешивания МТ, фафитового порошка н связующего (каменноугольный пек, фенолформальдегидная смола и др.), заготовки твэлов прессуют и далее подвергают термообработке, в процессе которой происходит полимеризация связующего, его карбонизация за счет пиролиза с выделением твердого коксового остатка и газообразных продуктов пиролиза (фенол, оксид углерода, водород и др.). Последней стадией термообработки является нафев до 1800 °С для окончательного удаления газообразных продуктов. [c.102]

    Современному нефтеперерабатывающему заводу присущи технологические установки большой мощности. Так, на основе атмосферно-вакуумной установки пропускной способностью 6 млн. т нефти в год, при варианте глубокой переработки этой пефти проектируется одна установка каталитического крекинга мощностью по свежему сырью примерно 4,7 млн. т год, одна установка непрерывного коксования пропускной способностью около 2,2 млн. т гудрона в год, единичные установки каталитического риформинга, алкилирования, полимеризации и др. Некоторые из установок осуществлены в виде двух параллельно работающих блоков (так называемых двух ниток ), связанных такими общими элементами, как система фракционирования, компрессии и т. д. [c.359]

    Молекула серы при обычных условиях и до 150 °С состоит из 8 атомов, соединенных в виде кольца (типа короны). В парах серы при iKH = 444,6 °С присутствуют также молекулы Sj, S4 и S2, причем с повышением температуры многоатомные молекулы распадаются и при 900 °С существуют лишь молекулы S2. При дальнейшем нагревании они диссоциируют на атомы. При этом окраска паров серы изменяется от оранжевой до бесцветной. Это объясняется тем, что сера относится к числу элементов, проявляющих аллотропию. Молекулы серы при комнатной температуре образуют кристаллы ромбической a-S (р = 2,07 г/см ). При 95,5 °С a-S превращается в моноклинную (i-S (р = 1,96 г/см ). P-S плавится при 119,3 °С. Расплавленная сера при 187 °С становится очень вязкой и при этом темнеет. Считают, что при этом кольца Sg разрываются и происходит полимеризация nSg = (Sg)n. [c.113]

    При полимеризации смеси двух или большего числа непредельных соединений часто (по не всегда) образуются макромолекулы, содержащие в качестве структурных элементов различные мономеры смеси. Такой сополимер следует отличать от смеси полимеров. Основные структурные элементы редко входят в состав полимера в том же молярном отношении, в каком они содержались в исходной смеси мономеров. [c.942]

    Элемента,оные реакции радикальной полимеризации 113 [c.113]

    По кислотно-основному механизму идут каталитические реакции гидролиза, гидратации и дегидратации, полимеризации, поликонденсации, крекинга, алкилирования, изомеризации и др. Типичные катализаторы для кислотно-основного взаимодействия — кислоты и основания. Активными катализаторами являются соединения бора, фтора, алюминия, кремния, фосфора, серы и других. элементов, обладающих кислотными свойсгвами, или соединения элементов 1 и 2 групп периодической системы, обладающих основными свойствами. [c.27]

    Гетероцепные полимеры содержат в основных цепях макромолекул, кроме углерода, атомы элементов, которые обычно входят в состав органических веществ кислород, азот, сера, фосфор. Такие полимерные соединения синтезируют в большинстве случаев по реакции поликонденсации, реже методом Ступенчатой и ионной полимеризации. [c.396]

    В процессе коксообразования на катализаторах оксидного типа при окислительной конверсии тяжелого нефтяного сырья протекают реакции окисления, дегидрирования, деалкилирования, деструкции, полимеризации и поликонденсации асфальто-смолистых веществ, причем окислительное консекутивное прев >ащение отложений приводит к более глубокой химической конверсии, чем термическое превращение [9]. Установлено селективное влияние железоокисных катализаторов на процесс выгорания основных элементов коксовых отложений (рис. 5). [c.205]

    Соли многих часто встречающихся в анализе элементов сильно гидролизуются. Особенно неустойчивы разбавленные растворы гидролизующихся солей. Например, уже в день приготовления разбавленные растворы железа(П1) заметно снижают из-за гидролиза свою концентрацию. В растворе солей поливалентных металлов может происходить полимеризация или поликонденсация их ионов, что также приводит к снижению концентрации этих элементов при стоянии растворов. Это особенно характерно для солей алюминия, железа, молибдена, циркония, тория, вольфрама. Растворы гидролизующихся солей сильных кислот полезно подкислять при хранении и выпарива- [c.21]

    Как будет ясно из гл. 1, число возможных конфигураций макромолекулы со степенью полимеризации п + 1 может во много раз превосходить 2 ограничивая в определенной мере и определенным образом степени свободы каждого элемента ансамбля (т. е. [c.12]

    Попытки точного определения процентного состава асфальтенов не приводят ни к чему, так как,, представляя собой соединения углерода и водорода, они могут иногда содержать и серу, кислород, даже азот. Присутствие этих последних элементов не объясняется Bob e наличием лишь примесей оця могут играть также известную роль и в образовании асфальтов. Кроме того природные продукты, изученные до сих пор, не представляли чего-то однородного, но были составлены из весьма различных веществ. Эти- вещества разделялись чрезвычайно трудно, и применявшиеся для этого средства часто служили причиной перегруппировки и полимеризации, что делало еще неблагодарнее предпринятую задачу. [c.113]

    При 1 150° в определенных условиях метан может претерпевать под действием высокой температуры частичную дегидрогенизацию, ведугцую благодаря реакциям полимеризации к образованию углеводородов ряда бензола. Чтобы избежать полной диссоциации метана на элементы, необходимо быстро охлаждать образуюпщеся ароматические углеводороды. [c.235]


    Алкены с большим числом атомов углерода имеют большее число отличаюидихся структур и, соответственио, большее число изомеров. Алкены — бесцветные вещества, прн содержании до четырех атомов углерода в обычных условиях — газы, от пяти до семнадцати атомов углерода — жидкости, а свыше восемнадцати атомов углерода — твердые тела. В химическом отнощении алкены отличаются значительной реакционной способностью, которая обусловлена наличием двойной связи между атомами углерода. Эти две межуглеродные связи не равноценны одна из них является сигма-, а другая—пн-связью (см. гл. П, 6). Пи-связь, являясь меиее прочной, имеет склонность к разрыву, что обусловливает резко выра кенную способность алкенов к реакциям присое-дииеиия. Алкены охотно присоединяют к себе атомы галогенов, кислорода, других окислительных элементов и сравнительно легко подвергаются полимеризации. [c.145]

    Помимо пепредельпых, полимеризации могут быть подвергнуты также и некоторые предельные органические соедииеиия, содержащие в своем составе кроме углерода также и другие миоговалеит-иые элементы, например кислород, азот, серу. [c.380]

    Присутствие различных катализаторов, в большинстве случаев солей металлов, благоприятствует процессу абсорбции газообразных олефинов серной кислотой. Так, соли металлов восьмой группы периодической системы элементов, например цианистый никель, увеличивают скорость реакции [58] для олефинов, содержащих более трех углеродных атомов. Указывается [59] на применение в качестве катализаторов комплексных цианидов металлов. Ряд катализаторов перечисляется при описании приготовления индивидуальных эфиров. Можно повысить эффективность процесса абсорбции газообразных олефинов, сначала сжижая олефины под давлением, а затем обрабатывая их серной кислотой [60]. Чтобы получить наиболее высокий выход кислых эфиров, необходимо использовать серную кислоту минимальной концентрации, способной обеспечить присоединение кислоты к данному олефину, так как с возрастанием концентрации кисло ты значительно усиливаются процессы полимеризации, в особенности высших олефинов. Пропилен и бутилены [61] полиме-ризуются при действии концентрированной серной кислоты. Пропилен реагирует с 90—92%-ной серной кислотой, образуя 4-ме-тилнентен-1 [62], тогда как 98%-ная кислота полимеризует его в более высококинящие продукты [63]. При избытке концентрированной кислоты изобутилен и высшие олефины превращаются в сложную смесь углеводородов, в которой преобладают парафины и циклоолефины [64]. В присутствии сернокислых солей меди и ртути даже этилен превращается 95%-ной кислотой в смесь углеводородов различных классов [65]. [c.16]

    Уже давно в масла, на основе которых готовят к >аски и лаки, а также в алкидные смолы, чтобы ускорить их высыхание и твердение, добавляют катализаторы, известные под названием сиккативы, или сушки. Интересно сравнить действие сиккативов и катализаторов, описанных в предыдущем разделе, В обоих случаях используются одни и те же элементы с переменной валентностью и в обоих случаях они образуют с органическими молекулами растворимые соединения. Кобальт и марганец при комнатной температуре и церий при температуре затвердевания инициируют высыхание за счет образования промежуточьых продуктов, обладающих окислительными свойствами. Другие элементы типа свинца, цинка, кальция и циркония дополняют действие кобальта и марганца, облегчая процесс полимеризации. В отсутствие кобальта или марганца, иницируюших процесс высыхания, полная реакция полимеризации протекала бы значительно медленнее /40/. [c.291]

    Эти процессы приводят к образованию рацемических смесей. Однако считается, что при спонтанной кристаллизации происходило разделение смесн. Наиболее вероятно, что разделение проходило случайным образом. Видимо, определяющую роль в разделении оптически активных соединений путем селективного комплексоебразования одного определенного стереоизомера играли минералы, как, например, природные асимметричные кристаллы кварца, и ионы металлов. В конце К01Щ0В, стереоселективная полимеризация олефинов на поверхности металлов (катализаторы Циглера — Натта) представляет собой хорощо изученный промышленный процесс для получения изотактических полимеров. Известно также, что связывание ионов металлов весьма важно для многих биохимических превращений. Такое связывание существенно для поддержания нативной структуры нуклеиновых кислот и многих белков и ферментов. Процесс отбора оптических изомеров мог происходить вследствие других физических явлений, например взаимодействие с радиоактивными элементами, радиация или космические лучи. Недавно проведенные эксперименты с стронцием-90 показывают, что D-ти-роэин быстрее разрушается, чем природный L-изомер. Весьма заманчиво привлечь эти факторы для объяснения происхождения диссимметричности в процессах жизнедеятельности. [c.186]

    При концентрировании водных растворов формальдегида образуются другие полимерные модификации — так называемые поли-оксиметилены (или параформальдегид ). Согласно исследованиям Штаудингера, они представляют собой смеси продуктов различных ступеней полимеризации, которые удалось частично разделить. В этих полимерных соединениях отдельные формальдегидные остатки связаны друг с другом через атомы кислорода, а концы цепей насыщены элементами воды, так что в данном случае можно говорить о ди-гидратах полиоксиметиленов . Их строение отвечает формуле (III) образование этих соединений можно себе представить как ангидриза-цию гидратированных молекул формальдегида  [c.211]

    Если бы лигнин образовывался только таким путем, то его состав должен был бы отвечать составу кониферилового спирта без двух или более атомов водорода. Потеря водорода, однако, составляет всего 1,5 Н. Следовательно, образование лигнина частично может происходить и без отщепления водорода. Такое соединение олигомеров обеспечивается с помощью промежуточно образующихся хинонметидов, в особенности гипотетического бифункционального хинонметида (X), представляющего o6oit промежуточную ступень в образовании пинорезинола. Наряду с этим может также происходить инициированная радикалами полимеризация остатков коричного спирта. Таким образом, принцип полимеризации, приводящей к лигнину, заключается в дегидрировании фенольных групп п-океикоричных спиртов. Образующиеся радикалы соединяются в промежуточные продукты типа хинонметидов, которые затем стабилизуются с образованием фенольных вторичных структурных элементов (111) — (VI) и др. Последние соединяются в высокомолекулярные агрегаты путем дальнейшего дегидрирования е образованием радикалов. На эту реакцию накладывается вторая, заключающаяся в том, что промежуточно возникающие хинонметиды, присоединяясь к ул<е образовавшимся продуктам, превращаются в устойчивые бенаоидные системы. Наряду с этим может происходить дальнейшее увеличение молекулы по типу стирольной полимеризации. [c.550]

    Сополимеры стирола и ненасыщенных эфиров, образующиеся в начальной стадии полимеризации, применяют как связующие в производстве крупногабаритных стеклотекстолитовых или стекло-волокнитовых изделий (кузовы автомобилей, корпуса лодок, баркасов, катеров, элементы обшивки самолетов). Их также используют в качестве пленкообразующих быстросохнущих лаковых покры- [c.530]

    Считается, что атомы инертных элементов или простейшие молекулы при интеркалировании фуллерита С ) заполняют только октаэдрические пустоты. Ранее исследования проводились на поликристаллических образцах, интеркалированных при довольно высоких давлениях и температурах или компактированных давлением до I GPa при комнатной температуре. В этих условиях возможны частичная полимеризация фуллерита С ) и образование дефектов в виде полимерных комплексов или цепочек. Поэтому для детального изучения интеркаляционной диффузии важное значение могут иметь эксперименты на образцах, свободных от напряжений и интеркалированных при низких давлениях. [c.126]

    В.В.Кафаровым и И.Н.Дороховым сформулированы основы стратегии системного анализа ХТП введено понятие физико-химической системы (ФХС) как совокупности детерминированно-стохастаческих эффектов и явлений различной природы, происходящих в рабочем объеме агтарата разработана общая методология математического моделирования ХТП как сложных ФХС с использованием топологического принципа формализации, который позволяет изучить комплекс составляющих данный процесс элементов и явлений, автоматизировать все процедуры построения математического описания ХТП проанализированы различные методы построения функциональных операторов (моделей) ФХС и идентификации их параметров рассмотрены задачи системного анализа основных процессов химической технологии (массовой кристаллизации из растворов и газовой фазы, измельчения и смешения сыпучих материалов, сушки, экстракции, ректификации, гетерогенного катализа, полимеризации). [c.12]

    Ракетные раструбы из материала КУП-ВМ высотой до 1000 мм и диаметром до 1500 мм на конус получают путем намотки на згщанную форму углеродного волокна, пропитанного фенолформальдегидной или иной смолой и формирования таким образом многослойной конструкции. Намоткой руководит вычислительная машина. Затем конструкция подвергается полимеризации в специ- 1льных автоклавах, термообработке во время обжига и высокотемпературной обработке при 2000-2200°С в электровакуумных печах. Там же производится в необходимых случаях пироуплотнение. Затем детали подвергаются механической обработке. Раструб не только несет функциональную задачу, но и является конструктивным элементом, дающим огромный выигрыш по весу изделия. [c.155]

    Из других органических производных элементов II группы следует сказать о цинк- и ртутьорганических соединениях. Они имеют меньшее значение, что связано прежде всего с относительной сложностью их синтеза (например, цинкорганических соединений). Однако эти соединения могут быть использованы для получения многих органических веществ, например спиртов. По реакционной способности цинкорганические соединения значительно уступают магний-органическим соединениям. Так, в обычных условиях они не реагируют с двуокисью углерода, очень чувствительны к действию влаги и часто воспламеняются на воздухе. Реакции ципкалкилов с водой, спиртами, кислородом и др., в основном, подобны реакциям с реактивами Гриньяра, но менее удобны в обращении. В последнее время цинкорганические соединения используются в качестве катализаторов при реакциях полимеризации. [c.176]


Смотреть страницы где упоминается термин Полимеризация элементов: [c.272]    [c.103]    [c.249]    [c.48]    [c.55]    [c.125]    [c.346]    [c.177]    [c.78]    [c.593]    [c.19]    [c.224]    [c.252]    [c.5]    [c.53]   
Основы общей химии Том 3 (1970) -- [ c.260 ]




ПОИСК







© 2024 chem21.info Реклама на сайте