Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поляризационные

Рис. 18.1. Поляризационные кривые, иллюстрирующие принцип независимости протекания электродных реакций Рис. 18.1. Поляризационные кривые, иллюстрирующие принцип независимости протекания электродных реакций

    I Анодная поляризационная кривая имеет вид, изображённый на рио. г.зг. [c.71]

    Уравнение поляризационной кривой в области потенциалов, заключенных между и при условиях, когда роль 1 з1-потен- [c.391]

    Классификация поляризационных явлений [c.295]

    Для этой же цели можно использовать и величину реакционного поляризационного сопротивления [c.327]

    УРАВНЕНИЕ РЕЗУЛЬТАТИВНОЙ ПОЛЯРИЗАЦИОННОЙ КРИВОЙ [c.389]

    Это дает первую точку для построения результирующей кривой по экспериментальным поляризационным кривым — точку Л. Она лежит на анодной ветви поляризационной кривой реакции (18.2) и характеризуется координатами и Если то [c.390]

    Величина / омп называется компромиссным или, в случае коррозионных процессов, коррозионным током. Точка с координатами комп и /рс = 0 является особой точкой результативной поляризационной кривой она разделяет катодные и анодные ветви кривой. [c.391]

    Пусть поляризационные кривые 1 п 2 пг. рис. 18.1 соответствуют реакциям [c.390]

    РАЗЛОЖЕНИЕ РЕЗУЛЬТАТИВНОЙ ПОЛЯРИЗАЦИОННОЙ КРИВОЙ НА ЧАСТНЫЕ ПОЛЯРИЗАЦИОННЫЕ КРИВЫЕ [c.394]

    Глава 18. Поляризационные явления в условиях одновременного протекания двух электродных реакций и более [c.386]

Рис. 19.7. Схема перехода водорода с поляризационной стороны мембраны на диффузионную Рис. 19.7. Схема перехода водорода с поляризационной стороны мембраны на диффузионную
    Глава 18. Поляризационные явления при одновременном 389 [c.389]

    Подобные же расчеты, проведенные на основании данных поляризационных измерений при протекании реакций (21.6) [c.437]

    Фактические катодная и анодная плотности тока могут быть различными, если поверхность корродирующего металла разделена на участки, на которых возможно протекание либо только катодной, либо только анодной реакции. Это, однако, не имеет значения при определении общей скорости коррозии, и, следовательно, можно рассматривать поверхность корродирующего металла как эквипотенциальную . Характер совмещенных поляризационных кривых, получаемых по этому методу, показан на рис. 24.6 (сплошные линии). Точка пересечения анодной и катодной поляризационных кривых дает на оси абсцисс скорость коррозии, а на оси ординат — стационарный потенциал. Так как вблизи стационарного потенциала поляризационные 1 данные перестают укладываться в полулогарифмическую зависимость, то скорость коррозии находят обычно по точке пересечения экстраполированных прямоли-не/шых участков поляризационных кривых (пунктирные линии на рис. 24.6). Сопоставление величин скорости коррозии, рассчитанных на основании поляризационных измерений, с полученными непосредсвеино из убыли массы (или в кислых средах по объему выделившегося водорода) для свинца, никеля и железа показало, что оба ряда данных совпадают в пределах ошибок опыта. Это позволило широко использовать метод поляризационных измерений при количественном изучении коррозионных процессов. [c.500]

    Результирующая поляризационная кривая, которая легко снимается обычными методами, в растворе, содержащем компоненты сопряженных реакций, может быть разложена на парциальные поляризационные кривые, если, как это уже отмечалось, известно распределение тока между частными реакциями. При потенциалах более положительных, чем и более отрицательных, чеМ З . результативный (внешний) ток / представляет собой сумму частных токов  [c.394]


    Для перехода через максивдм анодной поляризационной кривой необходимо, чтобы напряжение на объекте было на меньше напряжения,1](  [c.75]

    СОМ будет ионизация адсорбированного водорода с переходом его в раствор. Таким образом, эта область потенциалов отвечает только стадии разряда (при катодном толчке) и ионизации (при анодном толчке), что позволяет исследовать кинетику одной этой стадии без наложения осложняющих эффектов, связанных с процессами рекомбинации или диссоциации молекул водорода. Изучение зависимости емкости двойного слоя и омического сопротивления (эквивалентного торможению па стадии разряда) от частоты наложенного тока в этой области потенциалов позволило Долину, Эрш-леру и Фрумкину впервые непосредственно измерить скорость акта разряда. Параллельные поляризационные измерения при небольщих отклонениях от равновесного потенциала, где неренапряжение еще линейно зависит от плотности тока, дали возможность найти скорость суммарного процесса и сопоставить ее со скоростью стадии разряда. Было установлено, что акт разряда протекает с конечной скоростью, причем ее изменение с составом происходит параллельно изменению скорости суммарной реакции. В то же время скорость стадии разряда всегда больше, чем скорость суммарной реакции (в 27 раз в растворах соляной кислоты и в И раз в растворах гидроксида натрия). Таким образом, акт разряда хотя и протекает с конечной скоростью, но не определяет скорости всего процесса выделения водорода на гладкой платине и не является здесь лимитирующей или замедленной стадией. [c.416]

    Использование электродных аналогов двойного электрического слоя электрода под током, простейшие из которых представлены на рис. 14.1, позволило разработать методы экспериментального разделения общей поляризационной емкости на ее слагаемые. Методы эти, однако, являются ирибллженными, так как двойнослойная и псевдоемкость взаимосвязаны и изменение одной приводит к изменению другой. Тем не менее они нашли широкое применение и дали возможность получить ценную информацию о поведении границы раздела электрод — электролит в условиях электродной йоляризации. Наиболее часто используются мостовые и другие схемы на переменном токг, которые позволяют находить величину, называемую импедансом 2 и характеризующую полное сопротивление (активное — R и реактивное — С) электрической цепи переменному току. Для цепи, моделирующей электрод, импеданс определяется уравнением [c.289]

    Оба эти уравнения также дают возможность определить истинное. значение коэффициента переноса. Такой метод построения поляризационных кривых и определения величин а и /о был предложен Делахеем с сотр. и проверен на ряде электрохимических реакций. Метод предполагает, что величину гр1 можно рассчитать на основе теории двойного электрического слоя с использованием данных, относящихся к равновесным условиям. Допускается, что прохождение тока не изменяет существенно структуру двойного слоя. Это допущение оправдывается, по мигнию Делахея, с достаточно хорошим приближением вплоть до весьма высоких плотностей тока. [c.367]

    Из (17.145), (17.146) и (17.147) следует, что коэффициент переноса, определяемый из наклонг. поляризационных кривых, может существенно изменяться в зависимости от распределения падения потенциала в зоне контакта полупроводник — раствор и концентрации поверхностных состояний. [c.380]

    Из принципа независимости протекания совмещенных реакций вытекает другой, более частный принцип, принцип суперпозиции поляризационных кривых — ПСПК. Согласно ПСПК, поляризационная кривая, снятая на электроде, на котором одновременно протекают две или несколько реакций, может быть получена алгебраическим сложением по току поляризационных кривых всех частных реакций. Точно так же частные поляризационные кривые можно построить на основе результативной поляризационной кривой, если известна доля тока, идущая на каждую реакцию, т. е. ее выход по току. [c.388]

    Одновременно с этим потенциал диффузионной стороны также становится более отрицательным. Такой переход водорода н передача потенциала с поляризационной стороны на диффузионную возможны в том случае, если образующийся в процессе разряда атомарный водород не успевает покинуть поверхность электрода. Его ко1щентрация увеличивается по сравнению с равновесной, и он начинает проникать в глубь палладия, достигая диффузионной стороны мембраны. Появление избыточного водорода на диффузионной стороне сдвигает ее потенциал в отрицательном направлении, что также указывает на медленное протекание рекомбинации. Однако, по Фрумкину, иереиапря-жение водорода на палладии нельзя приписать только замедленности рекомбинации. Если поляризовать мембрану малым током до постоянного значения потенциала, а затем выключить ток, то для каждой из ее сторон получаются различные кривые спада потенциала. На поляризационной стороне непосредственно после выключения тока наблюдается резкое падение перенапряжения, которое затем уменьшается значительно медленнее. На диффузионной стороне проявляется только второй участок, т. е. после выключения тока потенциал постепенно сдвигается к его разновесному значению в данном растворе. Быстрый спад перенапряжения объясняется замедленностью разряда, медленный спад — удалением избыточного водорода. [c.418]

    По обычной методике снятия поляризационных кривых потен-цналы измеряют через некоторый промежуток времени с момента наложения нового значения тока. В результате, как это следует из характера временного изменения потенциала (рис. 22.3), при одной и той же плотности тока получаются сильно отличающиеся значения поляризации, что затрудяяет сопоставление данных, полученных разными авторами. [c.455]

    Детальное разграничение областей, отвечающих различным состояниям металла, сделалось возможным благодаря применению потенциостатического метода снятия поляризационных кривых. Пока пользовались обычным гальваиостатическим методом, многие особенности анодного поведения металлов ускользали от наблюдателей. Удавалось обнаружить только внезапные изменения потенциала, которые при прямом (от малых плотностей тока к большим) и обратном (от больших плотностей тока к малым) снятии поляризационных кривых настуналг не при одних и тех же плотностях тока, что указывало на сущестзоваиие каких-то гистерезисных [c.480]

    НИЙ теории локальных элементов, удобны для качественного рассмотрения процесса коррозии и для оценки возможного влияния на него различных факторов. В то же время их использование при. количественных расчетах скорости коррозии связано со значительными трудностями. Скорость коррозии определяется изменением массы образца за единицу времени, отнесенным к единице его поверхности, или (в электрических единицах) плотностью тока /. Коррозионные же диаграммы, прив15денныс на рнс. 24.4 и 24.5, построены в координатах потенциал — сила тока, т. е. не позволяют судить о плотности тока, непосредственно характеризующей скорость коррозии. Для ее расчета нужны поэтому дополнительные данные. Необходимо знать качественный состав корродирующего металла, чтобы выяснить, какие компоненты металла в данных условиях будут играть роль катодов и какие — анодов. Необходимо установить долю поверхности, приходящуюся на каждый катодный и анодный участок, чтобы иметь возможность определять плотность тока на любом из них. Далее требуется для всех анодных составляющих снять анодные поляризационные кривые, а для всех катодных— катодные. Это позволит найти общую скорость катодной, и анодной реакций и установить наиболее эффективные анодные и катодные составляющие. Зиая стационарные потенциалы, можно,, суммируя все катодные и все анодные кривые, построить результативную коррозионную диаграмму, пс которой уже затем определить максимально возможную силу тока. Предполагая, что омические потери малы, и зная, как распределяется поверхность между анодными и катодными зонами, вычисляют скорость коррозии. Этот сложный способ, дающий к тому же не всегда однозначные результаты (в связи с возможностью совмещения катодных и анодных реакций на одном и том же участке), редко применяется для количественной оценки скорости коррозии. [c.499]


    Задачу определения скорости коррозии решают проще с помощью кинетической теории коррозии. В этом случае катодную и анодную поляризационные кривые снимают непосредственно на образце, коррозию которого изучают. Общую скорость коррозии выражают силой тока, отнесенной к единице всей поверхности металла, без разделения ее на катодные и анодные участки. При стационарном потенциале скорость коррозии (вырал<аемая силой тока анодного растворения металла), отнесенная ко всей его поверхности (т. е. включая и катодные зоны), должна быть равна скорости катодного процесса, например скорости выделения водорода. Последняя в случае снятия катодной поляризационной кривой будет равна силе тока, деленной на всю поверхность образца, включая анодные участки. Таким образом,если потенциал стационарен, то плотности тока для анодного и катодного ироцессов при указанном способе снятия поляризационных кривых должны быть оди-ипкопымп. При этом предполагают, тo омическими потерями можно пренебречь. [c.499]


Смотреть страницы где упоминается термин Поляризационные: [c.71]    [c.291]    [c.295]    [c.306]    [c.308]    [c.328]    [c.352]    [c.387]    [c.390]    [c.390]    [c.390]    [c.390]    [c.393]    [c.394]    [c.410]    [c.417]    [c.417]    [c.418]    [c.418]    [c.428]    [c.463]    [c.479]   
Основы общей химии Том 3 (1970) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте