Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Протон поток

    Озон образуется в процессах, сопровождающихся выделением атомарного кислорода (радиолиз воды, разложение перекисей и др.), а также при действии на молекулярный кислород потока электронов, протонов, коротковолнового излучения, т. е. за счет радиохимических и фотохимических реакций. Цепную реакцию образования озона из кислорода можно представить схемой [c.321]

    Обычные методы анализа недостаточно чувствительны для обнаружения следовых количеств примесей в веществах. При проведении анализа этими методами часто сталкиваются с проблемой холостых определений (разд. 8.3). Для определения следовых количеств примесей в веществе целесообразно применять метод активационного анализа, обладающий высокой чувствительностью. Этот метод основан на превращении определяемых примесей при помощи ядерных реакций в радиоактивные нуклиды с последующим количественным определением их активности. Из множества ядерных реакций для проведения активационного анализа практически пригодны только реакции с участием нейтронов, протонов, дейтронов, тритонов, а-частиц й фотонов. Для объяснения сущности метода допустим, что речь идет об однородном веществе, содержащем реакционноспособные ядра и в течение определенного промежутка времени подвергающемся действию потока нейтронов или заряженных частиц. Число образовавшихся радиоактивных нуклидов М пропорционально потоку нейтронов Ф, числу реакционноспособных ядер N и эффективному сечению захвата о ядерной реакции [c.309]


    Бета-излучение — это поток р-частиц, которые являются электронами. С точки зрения протонно-нейтронной теории строения атомных ядер, испускание электронов является следствием превращения внутриядерных нейтронов в протон. Поскольку масса электрона со- [c.42]

    ХМ1-1-13. Рассчитайте дефект массы и энергию связи аО. Изотопная атомная масса О 15,99468 ат. ед. Массы протона и нейтрона 1,007277 и 1,008657 ат. ед. соответственно, а масса электрона 0,000549 ат. ед. ХП1-1-14. Масса покоя р-частицы 0,000549 ат. ед. Определите эффективную относительную массу, если р-частица движется со скоростью, равной 0,99 скорости света ХП1-1-15. Если пучок нейтронов с плотностью потока ф проходит сквозь поглощающую среду, то доля изменения плотности потока с1ф1ф в некоторой данной точке среды прямо пропорциональна длине пути с1х с1ф1ф= = Мос1х. N — число атомов мишени на 1 см среды, а а — микроскопическая площадь поперечного сечения. Покажите, что а может быть определена из графика зависимости пф от х. [c.148]

    В случае митохондрий все протонные потоки, связанные с работой дыхательной цепи, АТР-синтетазы или с пассивной утечкой через мембрану, а также поток электронов в дыхательной цепи и поток синтеза АТР могут быть описаны сходными уравнениями. Во всех случаях поток равен произведению коэффициента пропорциональности на разность свободных энергий между начальным и конечным состояниями. [c.66]

    Проникая в твердое вещество, излучение в зависимости от величины его энергии может затрагивать только валентные электроны, всю электронную оболочку атомов или же, при достаточно высокой энергии, и атомные ядра. В последнем случае оно производит не только возбуждение электронов, ионизацию, но и смещение атомов данного вещества из их нормальных положений. Зто относится как к электромагнитному излучению (видимому свету, ультрафиолетовым и рентгеновским лучам, 7-излучению), так и к потокам частиц (электронов, ионов, например, протонов или а-частиц и др.). При этом энергия излучения трансформируется частично в тепловую, вибрационную энергию твердого вещества, которая передается соприкасающимся с ним веществам, а частично в электромагнитное излучение сниженной частоты по сравнению с частотой поглощенной лучистой энергии. Местные изменения структуры твердого вещества, возникающие при его взаимодействии с излучением высоких энергий, принято называть радиационными дефектами. Радиационные дефекты, равномерно распределенные по всему сечению луча, проникающего в твердое вещество, создаются фотонами, электронами, а-частицами и т. д. [c.121]

    К ионизирующим относятся электромагнитные излучения высокой энергии - рентгеновские и у-лучи, корпускулярные излучения высокой энергии - быстрые электроны, протоны, нейтроны, дейтроны, а-частицы, осколки деления ядер, ядра отдачи, возникающие при ядерных реакциях, потоки тяжелых ионов [13]. [c.101]

    Радиационно-химические реакции. К радиационно-химическим относятся процессы, идущие под воздействием на вещество электромагнитных излучений или потоков частиц высоких энергий — рентгеновских и гамма-излучений, электронов, протонов, нейтронов, а-частиц и др. Происходящее под действием таких излучений и потоков частиц высоких энергий разложение называется радиолизом. [c.98]

    В настоящее время в науке дифракция потока электронов, нейтронов, протонов, подобно рентгеновским лучам, используется для изучения строения веществ. [c.18]

    Искусственно ядерные реакции вызываются облучением ( бомбардировкой ) исходного вещества ( мишени ) различными частицами, обладающими достаточно большой энергией протонами, нейтронами, а-частицами и т. д. Особенно широко применяется обработка нейтронами. Как уже отмечено, эта незаряженная частица сравнительно легко проникает в ядра различных элементов, включая и тяжелые с большим положительным зарядом. Процесс ведут в специальных установках — ядерных реакторах ( атомных котлах ). Достигаемая мощность потока — до 10 нейтронов на 1 см облучаемой поверх- [c.373]


    Радиационно-химические реакции (радиолиз) протекают, в отличие от фотохимических, под действием излучений высокой энергии. Обычно—это поток электронов, нейтронов, протонов, а-частиц и т. п., а также рентгеновские и у-лучи, приводящие к более сильному возбуждению молекул, чем это было при фотохимических реакциях. В остальном (механизм процесса, общие закономерности и т. п.) радиационно-химические реакции подобны фотохимическим. [c.188]

    Гипотеза де Бройля была экспериментально подтверждена обнаружением у потока электронов дифракционного и интерференционного эффектов. В настоящее время дифракция потоков электронов, нейтронов, протонов широко используется для изучения структуры веществ (см. раздел III). [c.8]

    Кокрофт и Уолтон построили генератор, дававший разность потенциалов около 700000 в. Этот генератор позволял получить поток ускоренных протонов, кинетическая энергия которых доходила до 300000—700000 эв. Предполагалось, что протон будет проникать в ядра легче, чем а-частица, так как его заряд в 2 раза меньше заряда а-частицы. Скорость протонов, полученных в генераторе, доходила до 10 ж в секунду. [c.62]

    Дж/моль. 2.6. 26,9 с . 3.1. 3.2. Общим кислотным и основным катализом называется катализ, который вызывается не водородными и гидроксильными ионами, а другими веществами — донорами и акцепторами протонов. 3.3. Принцип структурного (геометрического) соответствия предусматривает такое пространственное расположение атомов в реагирующих молекулах и атомов катализатора на его поверхности, которое обеспечивает соразмерное наложение реагирующих атомов молекулы (индексной группы) с сохранением валентных углов на определенную группу атомов катализатора (мультиплет). Этот принцип дает возможность подбора оптимального катализатора, исходя из соответствия геометрических параметров реагирующих молекул параметрам кристаллической решетки катализатора. 3.4. Для осуществления стационарного состояния на границе диффузионного потока необходимо каким-либо способом поддерживать постоянную во времени концентрацию  [c.114]

    Поток заряженных частиц (ускоренные электроны, протоны, дейтроны, а-частицы). Энергия частиц меняется в диапазоне 103—10 эВ. [c.207]

    Детектирование потока нейтронов можно проводить во-первых, непосредственным измерением борными счетчиками во-вторых, по количеству образующегося в детекторе (родий, марганец и т. п.) при ядерной реакции с нейтронами радиоактивного изотопа в-третьих, по возбуждаемому в результате ядерной реакции вторичному корпускулярному излучению, например, определение лития ио вторичным а-ча-стицам и тритонам, образующимся по реакции 1л(/г, а) Н. Подобно этому, по а-лучам или протонам, образующимся при реакциях В (п, а) Ве, N(/1,/ )) С и т. п., можно определить содержание бора, азота п других элементов. [c.365]

    Пример 2. При облучении жидкого этана потоком электронов был получен его спектр ЭПР (регистрировалась вторая производная) (рис. 5.30) [91]. На приведенном спектре видно четыре равноудаленных триплета (1 2 1) с относительными интенсивностями линий 1 3 3 1. Расщепление триплета может вызываться двумя эквивалентными протонами, в то время как расщепление квартета на четыре триплета, очевидно, вызывается тремя эквивалентными протонами. Таким образом, спектр можно объяснить, [c.272]

    Ядерные ре акции могут быть вызваны также искусственными потоками частиц . В 1932 г. Д. Кокрофтом и Е. Уолтоном в лаборатории Резерфорда и вскоре А. И. Лейпунским и А. К. Вальтером в СССР впервые была осуществлена реакция расщепления лития потоком быстрых протонов, ускоренных в электрическом поле высокого напряжения [c.21]

    Можно получить поток у-фотонов большой энергии, если при определенных условиях облучать А1 протонами по реакции (р, у)- В ядро атома какого изотопа превращается при этом исходное ядро Написать полное и сокращенное уравнения реакций. [c.36]

    Долгое время считали, что атомы построены только из протонов и электронов. В 1920 г. Резерфорд предположил существование нейтральной частицы с массой, близкой к массе протона однако эта частица была обнаружена Чедвиком лишь в 1932 г. Чедвик показал, что при бомбардировке некоторых легких элементов, например бериллия или бора, а-частицами — атомами ионизированного Не " — возникает излучение, представляющее собой поток частиц, не имеющих электрического заряда (т. е. не отклоняющихся в магнитном или электрическом поле) масса такой частицы лишь немногим превышает массу протона. Поскольку нейтрон не заряжен, он может приближаться к другим частицам, не подвергаясь действию электростатических сил этим легко можно объяснить его проникающую способность, которая очень важна для ядерных реакций. [c.15]

    Чем больше энергия бомбардирующих дейтронов, тем больше получается изотопов Н и Не. Между прочим, это источник получения для наших экспериментальных целей мощных однородных потоков нейтронов с энергией 2,4 10 эв и протонов с энергией 3 10 , причем затрата энергии сравнительно невелика. В то же время эти опыты устанавливают существование изотопов Н и Не. [c.65]

    Космическими лучами называется поток элементарных частиц и атомных ядер, идущий непрерывно из межпланетного пространства на Землю. Различают первичные и вторичные космические лучи. Первичные лучи в основном состоят из протонов и а-частиц и около 1% других ядер. Энергия этих частиц очень высока и достигает порядка 10 " эв у отдельных частиц энергия доходит до Ю взв. На высоте около 30 км над уровнем моря первичные космические лучи в результате столкновения с ядрами различных элементов порождают вторичные лучи, состоящие из мягкой и жесткой компонент. В состав последней входят фотоны, позитроны, электроны и мезоны. Мезоны обусловливают большую проникающую способность космических лучей. Сложные ядерные процессы, протекающие в зоне первичных и вторичных космических лучей, приводят также к образованию нейтронов. [c.68]

    В радиационной химии изучаются реакции, протекающие под действием излучений большой энергии. Под излучением здесь понимаются либо потоки элементарных частиц большой энергии нейтронов, электронов, протонов или ионов, либо электромагнитное излучение с короткой длиной волны — рентгеновские лучи, у — излучение. Подобные излучения получаются в настоящее время как результат распада радиоактивных элементов, либо непосредственно в атомном котле (если элементы короткоживущие), либо вне его (если период полураспада радиоактивного элемента достаточно велик). Рентгеновское излучение получают, как обычно, с помощью рентгеновских трубок. [c.308]

    Несравненно более широкие возможности открывает метод обстрела атомных ядер искусственно получаемым потоком заряженных частиц протонов, дейтронов или гелионов. Частицы эти легко образуются при действии электрических разрядов на соответствующий разреженный газ (водород, дейтерий или гелий), причем из литра последнего может быть, вообще говоря, добыто больше снарядов , чем испускается за неделю тонной чистого радия. Подвергая полученные частицы комбинированному воздействию электрического и магнитного полей, удается собрать их в узкий пучок, сообщить последнему ту или иную скорость и пустить его по заданному направлению. Подобный пучок заряженных частиц является, следовательно, в высокой степени управляемым, что принципиально отличает рассматриваемый метод от обстрела ядер а-частицами радиоактивного происхождения. [c.514]


    Передача энергии может быть осуществлена также с помощью облучения реагентов. Реакции, происходящие под действием света, называются фотохимическими, а раздел химии, изучающий эти реакции — фотохимией. Реакции, протекающие под действием излучений высоких энергий (7-излу-чение, рентгеновское излучение, потоки электронов, протонов, нейтронов, а-частиц и т.д.), называются радиационно-химическими изучением их занимается радиационная химия. [c.153]

    Соотношение вкладов этих двух потоков зависит от строения субстрата. Каталитическое действие гидроксильного иона, по-видимому, состоит в том, что он содействует отрыву протона гидроксильной груипы ст-комплекса, усиливает ее электронодонорное действие и облегчает тем самым отрыв сульфитного аниона  [c.172]

    Газообразный кислород не имеет цвета и запаха. В жидком и твердом состоянии он имеет бледно-синюю окраску. Под действием потока электронов, протонов, коротковолнового излучения молекулярный кислород частично превращается в озон Оз, имеющий еще более высокую окислительную активность, чем О2. [c.19]

Рис. 9-34. Убихинон (Q) способен откачивать протоны из матрикса путем направленного принятия и отдачи электронов. Как показано, убихинон быстро перемещается в липидном бислое и может перенести два электрона и два протона (см. рис. 9-17). Другие переносчики электронов, окисление и восстановление которых сопровождается принятием и отдачей протонов,-это NADH и FADH полагают, что они тоже подобным образом перемещают протоны. Однако такого рода механизмы перемещения протонов не позволяют обеспечить наблюдаемую величину протонного потока при данном потоке электронов (см. текст). Рис. 9-34. Убихинон (Q) способен откачивать протоны из матрикса путем направленного принятия и отдачи электронов. Как показано, убихинон быстро перемещается в липидном бислое и может перенести два электрона и два протона (см. рис. 9-17). Другие переносчики электронов, окисление и восстановление которых сопровождается принятием и отдачей протонов,-это NADH и FADH полагают, что они тоже подобным образом перемещают протоны. Однако такого рода механизмы перемещения протонов не позволяют обеспечить наблюдаемую величину протонного потока при данном потоке электронов (см. текст).
    Электрические свойства катализаторов из металлов или окислов бесспорно должны оказывать влияние на ковалентные или элек-тровалентные связи ориентированных или адсорбированных молекул, вызывая деформации их, приводяш,ие к перестройке связей и образованию новых продуктов. Мысль о том, что свободные электроны металла являются причиной каталитической активности, была высказана Л. В. Писаржевским с сотрудниками [58]. Так, например, реакцию 21 2+0. над платиной они объясняли тем, что с поверхности последней вырывается поток электронов, выталкивающий электроны из водорода и превращающий их в свободные протоны. Вытолкнутые электроны образуют с О анионы О", которые сочетаются с платиной в (Р1"0.2)". Это соединение легко превращается в поверхностный комплекс, в котором ион О соединяется с 2Н" в НдО. Аналогично Л. В. Писаржевский объяснял и другие каталитические реакции в присутствии металлов или их окислов как процесс медленно идущей диссоциации на ионы и электроны, например  [c.160]

    Это химические реакции, протекающие под действием излучения высокой энергии (рентгеновское и 7-излучение, поток электронов, протонов и т.п.). Такие излучения имеют значительно большую энергию, чем энергия световых квантов, и поэтому их действие сильно отличается от действия света. Например, для возбуждения фотохимической реакции требуется свет определенной частоты. Лучи света, вызывающие одну фотохимическук) реакцию, могут быть совершенно неактивными для другой реакции. Излучения же высокой энергии не обладают такой специфичностью. [c.316]

    Проходя сквозь вещество, ядерные частицы взаимодействуют в основном с электронными оболочками атомов, а не с ядрами, так как доля пространства, занимаемая последними, весьма мала и состаршяет —10 об.%. Главный результат взаимодействия этих частиц с веществом — ионизация и (или) возбуждение молекул. Поэтому -у-лучи, быстрые электроны, протоны, нейтроны, дейтроны, а-частицы, осколки деления ядер, ядра отдачи, возникающие при ядерных реакциях, потоки ускоренных многозарядных ионов называются ионизирующими излучениями. [c.594]

    В результате фундаментальных исследований в области развития учения о строении атомов химических элементов были открыты и количественно охарактеризованы элементарные частицы, обладающие массой покоя,— электроны, протоны и нейтроны. В 1891 г. английским физиком Дж. Стонеем был введен термин электрон, обозначавший единичный электрический заряд, а в 1897 г. Дж. Томсон, изучая катодное излучение в трубке Крукса, доказал, что оно представляет собой поток отрицательно заряженных частиц. Б 1909 г. Р. Малликен установил заряд электрона, равный 1,60210-10 Кл (масса электрона 9,1091 10" кг, размер 10 м). Каналовое излучение в аналогичных опытах представляло, как было установлено немецким физиком Е. Гольдштейном (1886), потоки положительно заряженных частиц, заряды которых были кратны заряду электрона или равны ему, но противоположны по знаку, а масса совпадала с массой атома водорода (1,67252-10 кг). Эти частицы были названы протонами (Дж. Томсон, В. Вин). В 1932 г. Дж. Чедвик при изучении ядерных реакций открыл нейтральную частицу с массой 1,67474-10 кг, которая была названа нейтроном. [c.189]

    Еще более сильное действие на молекулы оказывают ядерные излучения (у-излучение, протоны, нейтроны и др.) и рентгеновское излучение. Раздел химии, занимающийся вопросами химического действия этих излучений, называется радиационной химией. В отличие от нее радиохимией называют химию радиоактивных элементов, в частности химию меченых атомов . Радиационная химия развивается в связи с развитием ядернсй физико-химии и ядерной энергетики. Атомные реакторы, ускорители частиц, радиоактивные изотопы дают разнообразные очень мощные потоки частиц, которыми все больше начинают пользоваться для осуществления химических реакций. Эти излучения рвут связи, выбивают отдельные атомы, порождают радикалы и ионы, а затем идут перегруппировки связей и возникают новые. Например, вместо двухстадийного обычного химического получения фенола из бензола можно получать это важнейшее вещество из бензола и воды в одностадийном процессе с использованием ядерных излучений. При этом из воды получаются радикалы ОН и Н и бензол далее реагирует по схеме [c.57]

    Точный расчет допустимых потоков на ткани кроме принадлежности их к определенной группе критических органов (см. табл. 1) требует учета поглощения и рассеяния частиц в экранирующих тканях. При оценке дозы внешнего облучения потоком слабопроникающих излучений (бета-частицы и электроны, альфа-частицы, протоны и другие заряженные частицы небольшой энергии) следует иметь в виду, что толщина слоя тканей и жидкостей, экранирующих хрусталик глаза, принята равной 300 мг см толщина кожи — 100 мг1см , в том числе толщина эпидермиса кожи, экранирующего базальиый слой эпителия, — 7 мг1см . [c.233]


Библиография для Протон поток: [c.71]   
Смотреть страницы где упоминается термин Протон поток: [c.111]    [c.33]    [c.268]    [c.19]    [c.379]    [c.586]    [c.291]    [c.787]    [c.14]   
Основы общей химии Том 3 (1970) -- [ c.346 ]




ПОИСК







© 2025 chem21.info Реклама на сайте