Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свинец растворимость в цинке

    К первой группе относятся алюминий, свинец и цинк, окислы которых растворимы как в кислой, так и в щелочной средах, т. е. метал. , обладающие амфотерностью. Коррозия этих металлов увеличивается как при увеличении, так и уменьшении pH (рис. 1.5, а). [c.10]

    Серебро получают также в качестве побочного продукта при рафинировании меди и свинца. При электролитической очистке меди серебро и золото скапливаются на дне ванны извлечь эти металлы можно простыми химическими методами. Небольшое количество серебра, содержащееся в сыром свинце, извлекают остроумным способом, так называемым методом Паркса. При этом в расплавленный свинец добавляют небольшое количество (около 1%) цинка. Жидкий цинк нерастворим в жидком свинце, а растворимость серебра в жидком цинке приблизительно в 3000 раз превышает растворимость в жидком свинце. Следовательно, константа распределения между двумя жидкостями (гл. XVI) составляет 3000, т. е. большая часть серебра растворится в цинке. Цинко-серебряная фаза после перемешивания всплывает, ей дают затвердеть, а затем отделяют цинк можно отогнать, а серебро останется в перегонном аппарате. Содержащееся в свинце золото также извлекают этим методом. [c.407]


    МЕДИ СПЛАВЫ — сплавы на ото ве меди. В виде бронзы применялись за 3000 лет до н. э. В жидком состоянии медь сплавляется со многими элементами, с большинством из них — в любом соотношении. Лишь вольфрам, молибден, осмий, рутений и тантал практически не сплавляются с нер. В твердом состоянии макс. растворимость элементов (в альфа-твердом растворе меди) изменяется в очень широких пределах от сотых и десятых долей процента (хром, ниобий, свинец, ванадий, цирконий) до процентов (серебро, алюминий, мышьяк, бериллий, кадмий, кобальт, железо, магний, кремний, титан и др.) и десятков процентов (индий, олово, цинк). Неограниченно растворяются никель, золото, марганец, палладий и платина. Однако с золотом, марганцем, палладием и платиной М. с. в твердом состоянии претерпевают превращения. С увеличением концентрации легирующего элемента в альфа-твердом растворе меди повышается мех. прочность сплавов их теплопроводность и электропроводность уменьшаются (менее всего при легировании серебром). К вредным примесям относятся висмут, сурьма, свинец и углерод (в медноникелевых сплавах), к-рые приводят к хрупкости. Стойкость против коррозии М. с. зависит от природы легирующего элемента и окружающей среды. Повышают стойкость никель, олово и алюминий. С понижением т-ры раст  [c.780]

    Обнаруживаются и другие производные, создающие трудности при извлечении белков из листьев [93]. Тяжелые ядовитые металлы, особенно свинец и цинк, могут концентрироваться в листьях в ходе развития растений на определенных почвах, их удаление представляется возможным посредством коагуляции в присутствии хелатирующих агентов. Наконец, нередко сообщается о наличии алкалоидов в листьях однако ввиду их растворимости в кислой среде они легко удаляются промывкой белков при pH 4. [c.350]

    Купферон реагирует со многими катионами, образуя труднорастворимые комплексы. Растворимость купферона-тов металлов зависит от кислотности растворов регулируя кислотность, можно провести разделение катионов. Например, в сильнокислом растворе (5—10 %-ной соляной или серной) купфероном осаждаются железо, галлий, гафний, ниобий, палладий, полоний, олово, тантал и титан частично осаждаются висмут, молибден, сурьма, вольфрам. В слабокислом растворе осаждаются висмут, медь, ртуть, молибден, олово, торий, вольфрам. В нейтральной среде осаждаются (в присутствии ацетатного буфера) серебро, алюминий, бериллий, кобальт, хром, марганец, никель, свинец, РЗЭ, таллий и цинк. Купферон дает возможность отделить железо, титан, ванадий и цирконий от алюминия, кобальта, меди, арсенита и фосфата. Его часто используют для отделения мешающих катионов, например железа при определении алюминия, а также железа и ванадия при определении фосфора в феррованадии. [c.165]

    Русские ученые П. П. Аносов и Д. Л. Чернов показали, что свойства сплавов зависят не только от состава, но и от кристаллического строения. Обычные химические методы оказались малопригодными для изучения сплавов. Поэтому академик Н. С. Курнаков предложил новый метод изучения сплавов — физико-химический анализ. С помош,ью этого метода установлено, что растворение одних металлов в других аналогично смешению жидкостей. Поэтому различают металлы ограниченно растворимые один в другом и смешивающиеся в любых отношениях. Свинец и цинк — металлы с ограниченной взаимной растворимостью. При охлаждении жидкого сплава их получаются два слоя верхний — цинковый, содержащий немного свинца, и нижний — свинцовый с примесями цинка. [c.247]

    Д Расплавленные металлы (цинк при 420 °С, свинец и олово при 450 °С) не влияют на кварц. При 800 °С свинец и цинк его сильно разрушают. При действии расплавленной сурьмы на поверхности кварца образуются не растворимые в кислотах непрозрачные пленки. Расплавленное серебро разрушает кварц и на его поверхности образуются шероховатости и трещины. Расплавленные алюминий и медь заметно диффундируют в кварц, делая его непрозрачным и очень хрупким Д. [c.17]


    Чаще металлы растворяются друг в друге ограниченно. Примером двух металлов с ограниченной растворимостью могут служить свинец и цинк. Если приготовить жидкий сплав цинка и свинца, затем охладить его до твердого состояния, то он разделится на два слоя нижний свинцовый, в котором будет содержаться небольшое количество цинка, и верхний цинковый, содержащий малое количество свинца. Приведенный пример показывает, что взаимная растворимость двух ограниченно растворимых металлов, как и двух ограниченно растворимых жидкостей, увеличивается с повышением температуры. В системе из двух металлов с ограниченной взаимной растворимостью третий металл растворяется в каждом из двух металлов не в одинаковой мере. Так, при расслоении жидкого сплава цинка и свинца, содержащего серебро, большая часть последнего переходит в цинковый слой и очень малое количество серебра будет находиться в свинцовом слое. [c.379]

    Труднее объяснить действие таких металлов, как свинец и цинк. Известно, что полимеризованное масло высыхает в присутствии свинцового глета лучше, чем при содержании такого же количества свинца в форме растворимого сиккатива. В первом случае обычно считают, что часть масла омыляется и образуются основные соли свинца. Но это омыление только частичное, а оставшаяся окись свинца будет реагировать с свободными спиртовыми радикалами диглицеридов с образованием глицератов свинца (типа алкоголятов), что приводит к увеличению функциональности  [c.110]

    Устойчивость в щелочах и моющих средствах. Простым методом снятия эмали с листовой стали является погружение в расплавленную каустическую соду или в горячий концентрированный водный раствор. При этом структура разрыхляется за счет двуокиси кремния с образованием силиката натрия. Однако, несмотря на это, эмали устойчивы против действия синтетических моющих средств и щелочей средней концентрации и их часто с успехом применяют для стиральных машин, ванн, раковин и т. д. В таких эмалях содержится больше окиси алюминия, чем в кислотоустойчивых. Кроме того, в состав фритт часто вводят цирконий. Другими элементами, способствующими устойчивости к действию щелочей, являются барий, кальций, свинец и цинк [4]. Их действие заключается в упрочнении связи в структуре стекла и в образовании нерастворимых силикатов, которые действуют в качестве защитного слоя, замедляя образование растворимого силиката натрия. [c.524]

    Так, жидкое олово и свинец неограниченно растворимы друг в друге, но нерастворимы в твердом состоянии. Поэтому прн медленном охлаждении раствора (расплава) вначале кристаллизуется либо цинк, либо олово. Например, при охлаждении раствора состава 60% 2п и 40% 5п в твердую фазу начинает выделяться цинк. Это происходит, когда будет достигнута температура кристаллизации цинка нз расплава, отвечающая взятому составу (точка а). Как мы видели (стр. 163), растворы кристаллизуются при более низкой температуре, чем чистые жидкости. Поэтому температура начала выделения цинка лежит ниже его точки кристаллизации (419°С). По мере выделения цинка и обогащения системы оловом температура кристаллизации [c.191]

    Как видно из таблицы, индий (металл, хорошо растворимый в ртути) при относительно высокой плотности тока почти полностью выделяется из амальгамы. Медь же, и особенно сурьма, выделяется лишь частично даже при значительно меньших плотностях тока. Аналогично индию ведут себя такие металлы, как цинк, свинец, олово, таллий [1]. Аналогично меди и сурьме ведет себя марганец [2]. [c.216]

    Взаимодействие с металлами. Индий, как и галлий, не образует ни с одним металлом непрерывных твердых растворов. Большой растворимостью в индии в твердом состоянии обладают все металлы, окружающие его в периодической системе галлий, таллий, олово, свинец, висмут, кадмий, ртуть, в меньшей мере — цинк. Кроме того, большой растворимостью в индии обладают магний и литий. Сам индий образует твердые растворы на основе металлов подгруппы меди, а также никеля, марганца, палладия, титана, магния, олова, свинца и таллия. Ограниченная растворимость в жидком состоянии обнаружена в системах индия с алюминием, железом и бериллием. [c.297]

    Анодные процессы при электролизе расплавов. Процессы электролиза расплавленных сред осуществляются с растворимыми и нерастворимыми анодами. Растворимые аноды применяют при электролитическом рафинировании и получении чистых металлов (алюминий, магний, титан). При электрорафинировании алюминия и магния в качестве анодов используют металл-сырец, к которому добавляют утяжелитель. Это делается для того, чтобы в ванне можно было создать три слоя в соответствии с плотностями нижний— жидкий анод (сплав алюминия и меди), средний — электролит и верхний — катод (чистый алюминий). При электрорафинировании магния в качестве утяжелителя магниевого анода применяют цинк, медь или свинец. При электрорафинировании титана берут твердый растворимый титановый анод. [c.215]

    При амперометрическом варианте необходимость в индикаторе отпадает. Кроме того, подбирая соответствующие условия, можно проводить титрование в присутствии больших количеств кальция, магния, свинца (при сульфатном фоне свинец в большей своей части окажется в осадке), меди (до соотношения меди к цинку, равном примерно 1 1), кадмия (до соотношения кадмия к цинку, равном примерно 1 10), алюминия и железа. Такая возможность достигается подбором фона, способствующего связыванию мешающих элементов в комплексные соединения или выпадению их в осадок. Так, в ацетатно-аммиачной среде медь и кадмий удерживаются в виде комплексных соединений, а цинк, обладающий наименьшей по сравнению с другими металлами растворимостью ферроцианидного соединения, выпадает в осадок. Железо в аммиачной среде выпадает в осадок и не мешает титрованию, если его содержание не слишком велико, так как в ином случае цинк может адсорбироваться осадком гидроокиси железа. Поэтому при высоких содержаниях железа (около 10% и выше) следует прибегать к добавлению лимонной кислоты связывающей его в достаточно прочный комплекс, из которого ферроцианид не осаждает железо. Добавление лимонной кислоты также ослабляет влияние алюминия, которое вообще довольно заметно при всех титрованиях с платиновым электродом (возможно, что алюминий пассивирует электрод вследствие образования тончайшей пленки гидроокиси, появляющейся в результате гидролиза солей алюминия). [c.345]

    В общем виде, учитывая растворимость соединений различных тяжелых металлов, можно расположить их по токсичности в зависимости от степени кислотности в следующий убывающий ряд кадмий > никель > цинк > марганец > медь > свинец > ртуть. [c.175]

    На рис. 16 приведены схематические кривые титрования раствором феррицианида различных ионов, образующих с феррицианидом малорастворимые осадки и потому титрующихся нормально медь (И), серебро, кадмий, железо (II) —кривые 1 ш 2 ионов, образующих с феррицианидом относительно растворимые осадки и потому дающих размытые кривые титрования цинк, кобальт (II) и ртуть (II) — кривая 3 ионов, образующих малорастворимые осадки не с ферри-, а с ферроцианидом никель и свинец — кривые 4 и 5-, ионов, не образующих осадков с феррицианидом хром (III), сурьма (III), железо (III) —кривая 6. [c.58]


    Ферроцианид индия 1п4[Ре(СК)б]з обладает очень малой растворимостью поэтому определение индия в виде ферроцианида очень привлекательно, тем более, что выполняется оно чрезвычайно просто, особенно при работе с платиновым электродом или по методу с двумя индикаторными электродами. К сожалению, однако, определению индия этим методом мешают элементы, также осаждающиеся ферроцианидом (цинк, кадмий, медь, свинец и др.). [c.214]

    Титрование проводят при потенциалах от +0,8 до +1,1 в (МИЭ) по току окисления избыточного ферроцианида. Следует отметить, что в начале титрования может наблюдаться начальный ток, постепенно уменьшающийся по мере титрования. Этот ток вызывается окислением марганца (И) на платиновом электроде, которое начинается при потенциалах около +0,7 в. Определению марганца ферроцианидным методом мешают другие Ионы, образующие с ферроцианидом менее растворимые осадки, чем марганец, в частности цинк, медь, железо (1П), свинец и др. [c.251]

    Если примеси в ртути содержатся в сравнительно больших количествах, то их определяют химическим анализом. Наиболее надежная и чувствительная методика определения примесей в ртути, основанная на использовании дифенилтиокарбазона (ди-тизона), была разработана Ю. И. Черниховым, ц В. Г. Горюши-ной 2 . Дитизон со многими металлами дает окрашенные в яркие цвета внутрикомплексные соединени я, хорошо растворимые в хлороформе, четыреххлористом углероде и друпих органических растворителях. С помощью дитизона можно определить свинец, висмут, цинк и серебро, если содержание каждого из них в ртути составляет не менее 2 10 % вес. Обязательным условием успешного проведения анализа является чистота исходных веществ дитизона, органических растворителей, реактивов, употребляемых для приготовления стандартных растворов, и дистиллированной воды, которая должна удовлетворять требованиям бидистиллята. В связи с большой чувствительностью реакции взаимодействия дитизона с ионами металлов все работы с ним, а также хранение реактивов и дистиллированной воды необходимо производить в посуде из трудно выщелачиваемого стекла пирекс, а еще лучше— в кварцевой или полиэтиленовой посуде. Все химические вещества, применяемые при анализе, должны быть проверены на содержание в них анализируемых металлов. Колориметрические сосудьв необходимо тщательно промывать сначала дистиллированной водой, а затем раствором дитизона до прекращения изменения окраски дитизона при встряхивании его в сосуде. [c.31]

    Осаждения добавлением сульфид-ионов имеют очень важное значение в количественном анализе не только для выделения отдельных элементов, но и для отделения групп элементов друг от друга. Осаждения могут быть проведены при самых различных условиях как в отношении концентрации ионов водорода, так и в отношении других особенностей раствора, в зависимости от преследуемых целей. Например, изменяя концентрацию ионов водорода, можно мышьяк (V) отделить от свинца, свинец от цинка, цинк от никеля, никель от марганца й марганец от магния. В щелочных растворах некоторые сульфиды образуют растворимые соединения, что может быть использовано для разделения элементов внутри группы, например для отделения свинца от молибдена. Разделения внутри группы возможны также путем превращения одного или нескольких ее членов в комплексные анионы, которые не реагируют с сульфид-ионами, например отделение кадмия от меди в растворе цианида, меди или сурьмы (III) от олова (IV) в растворе фтористоводородной кислоты, и сурьмы от олова в растворе, содержащем щавелевую кислоту и оксалат. [c.83]

    Металлические катализаторы (медь, цинк, марганец, кадмий, олово, свинец, серебро) соли металлов (нитрат меди, нитрат цинка), способные давать растворимые комплексные ионы с азотистыми основаниями, например аммиаком при прибавлении гидрата окиси аммония к одной или нескольким из этих солей получается прозрачный раствор при нагревании этого раствора медленно выделяется аммиак и осаждается гидрат окиси металла [c.467]

    По процессу Паркеса серебросодержащий свинец плавится вместе с металлическим цинком. При охлаждении тройного сплава свинец — серебро — цинк ниже 400° отделяется нижний слой, состоящий из жидкого свинца, который содержит небольшое количество цинка и серебра, и верхний твердый слой, состоящий из смешанных кристаллов цинк — серебро с небольшим количеством свинца. Образование смешанных кристаллов цинк — серебро основывается на более высокой растворимости серебра в цинке, чем в свинце, и на разделении при охлаждении серебросодержащего цинка и свинца на два слоя. При отгонке цинка (точка кипения которого 907°) из сплава свинец — цинк — серебро остается свинец, который содержит 8—12% серебра и служит для получения сырого серебра путем купелирования. Из тройного сплава свинец-цинк — серебро цинк может быть удален в виде Na2Zn02 сплавлением с КазСОз. [c.726]

    Изменение pH раствора может оказать влияние также и на анодные процессы. По мере увеличения pH растворимость гидроокисей некоторых металлов уменьшается (железо, кадмий, магний), а других — увеличивается (алюминий, цинк, свинец). Поэтому свойства продуктов коррозии, образовавшихся в растворах с различным значением pH, разные. Для некоторых металлов наблюдается образование в щелочных растворах защитных пленок, для других в этих же условиях происходит их разрушение. [c.104]

    Отношения рассматриваемых металлов к ртути следующее галлий растворяется в ртути при комнатной температуре относительно мало— 1,54% (вес.) [1047]. При 200° С растворяется уже 22% галлия. Это позволяет отделять галлий от многих других металлов металлы, нерастворимые в ртути при этой температуре, просто отфильтровывают, а после охлаждения амальгамы из нее выделяется галлий, всплывающий на поверхности ртути в виде кристаллических образований. Для облегчения кристаллизации вводят затравку (металлический галлий). В амальгаме остается около 1,2% галлия и металлы, хорошо в ней растворимые (свинец, таллий, индий, кадмий, цинк, олово, висмут) [170]. [c.395]

    Рассмотрим, как влияет величина pH на скорость коррозии, протекающей с выделением водорода, и на коррозионное поведение некоторых металлов. Уменьшение pH (увеличение концентрации Н -ионов) обычно приводит к возрастанию скорости коррозии прежде всего потому, что в кислой среде продукты коррозии (окиси, соли) лу чше растворимы и не создают помех для контакта металла со средой. Если в коррозии принимают участие макропары, то тогда увеличение концентрации Н способствует коррозии еще и потому, что приводит к значительному увеличению электропроводности среды. Высокие значения pH (щелочная среда) оказываются опасными для металлов, окислы которых амфотерны, т. е. растворяются в кислотах и в щелочах. Примерами таких металлов могут служить алюминий, свинец, олово, цинк, хром и некоторые другие. [c.185]

    При восстановлении руд, содержащих серебро, последнее выделяется вместе с другими металлами в свободном состоянии. В зависимости от природы и относительных количеств сонутствующих серебру металлов, существуют и различные способы выделения серебра из общей смеси металлов. Если, папример, пол чепная восстановлением руды смесь расплавленных жидких металлов состоит из свинца, цинка и серебра, то отделение серебра от этой смеси может быть произведено следующим образом. Расплавленные свинец и цинк при охланодении плохо растворимы друг в друге, вследствие чего металлическая жидкость расслаивается нижний слой состоит из свинца (с небольшим количеством цинка), верхний, слой — из цинка (с небольшим количеством свинца). Серебро значительно лучше растворяется в расплавленном цинке, чем в свинце, вследствие чего почти все количество серебра оказывается в цинковом слое. [c.260]

    Часто выделение следов тяжелых металлов из фльших объемов растворов можно осуществить электролизом. Среди металлов, которые были выделены путем электролитического осаждения на платине или других металлических электродах, можно указать медь свинец ртуть цинк, серебро и золото (ср. стр. 447). Из-за растворимости в воде ртуть осаждается не полностью.  [c.43]

    Низкомолекулярные кислоты, выделенные из легких нефтяных фракций, представляют собой маловязкие жидкости с резким запахом высокомолекулярные кислоты, выделенное из масляных фракций, представляют собой густые, а иногда полутвердые пе-кообразные вещества. Нефтяные кислоты практически не растворимы в воде, хорошо растворимы в углеводородах. Кислотное число их уменьшается по мере увеличения молекулярной массы и колеблется в пределах 350—25 мг КОН/г. Нефтяные кислоты представляют собой насыщенные соединения, йодное число их невелико. Вязкость нефтяных кислот увеличивается с возрастанием молекулярной массы, поверхностное натяжение на границе с водой и воздухом уменьшается. Нефтяные кислоты способны кор-розионно воздействовать на металлы (свинец, цинк, медь, олово, железо), образуя соответствующие соли алюминий по отношению к ним устойчив. Соли нефтяных кислот за исключением щелочных не растворимы в воде. [c.35]

    Уменьшение pH растворов не-6 8 10 12 pH окислительных кислот обычно приводит также к увеличению растворимости продуктов коррозии, которые не создают защитных пленок на поверхности металла. Растворы с высокими значениями pH (щелочные среды) растворяют металлы, гидраты окислов которых амфотерны, т, е, растворимы в кислотах и щелочах. Такими металлами являются алюминий, цинк, свинец, олово и некоторые другие. При этом в кислотах образуются ионы растворяющихся металлов, а в щелочных растворах — комп./юксные ионы, в то время как самостоятельные катионы металлов в этих растворах отсутствуют. [c.70]

    Осаждение в виде сульфида. Сульфид — одно из наименее растворимых соединений таллия. Но этот способ осаждения не является селективным, так как все металлы — спутники таллия (цинк, кадмий, свинец, медь и т. д.) также образуют нерастворимые сульфиды. Поэтому сульфидное осаждение целесообразно применять только к растворам после водного или содового выщелачивания, содержащим, помимо таллия, лишь сравнительно небольшое количество примесей тяжелых металлов. Чаще всего осаждают сульфид, добавляя ЫзгЗ к раствору (при 90°). Если в исходном растворе есть мышьяк, его удаляют, обрабатывая осадок сульфидов при нагревании раствором ЫагЗ (50—60 г/л). [c.344]

    Определение ионов металлов. Благодаря соответствующему выбору фонового электролита, pH и лигандов практически любой металл может быть восстановлен на ртутном капающем электроде до амальгамы или до растворимого иона с более низкой степенью окисления. Во многих случаях получают полярографические волны, пригодные для количественного определения этих веществ. Такие двухвалентные катионы, как кадмий, кобальт, медь, свинец, марганец, никель, олово и цинк, можно определить во многих различных комплексующих и некомплексующих средах. Ионы щелочно-земельных элементов — бария, кальция, магния и стронция — дают хорошо выраженные полярографические волны при приблизительно —2,0 В относительно Нас. КЭ в растворах, содержащих иодид тетраэтиламмония в качестве фонового электролита. Цезий, литий, калий, рубидий и натрий восстанавливаются между —2,1 и —2,3 В отн. Нас. КЭ в водной и спиртовой среде гидроксида тетраалкиламмония. Опубликованы данные полярографического поведения трехзарядных ионов алюминия, висмута, хрома, европия, галлия, золота, индия, железа, самария, урана, ванадия и иттербия в различных растворах фоновых электролитов. [c.457]

    I] твердом состоянии металлы нракт чески не взаимодействуют друг с друго.м, по более или менее хороню растворяются в расплавленных металлах. Различные раси .авленные металлы в боль-иишсгве случаев смешиваются друг с другом в любых отношениях, образуя жидк ие однородные системы. Только в отдельных случаях набл10дается неполная взаимная растворимость жидких металлов друг в друге. Так, например, расплавленные цинк и свинец прн смешивании образуют двухслойную жидкую систему, фазы которой представляют собой растворы цинка в свиице и свинца в цинке. [c.225]

    Влияние растворителя. Растворимость большинства соединений катионов с анионами неорганических кислот резко понижается при введении органических растворителей. Так, например, сернокислый свинец или кремнефтористый калий заметно растворимы в воде, но практически нерастворимы в 50%-ном спирте. При определении калия в виде хлоропла-тината или перхлората и натрия в виде тройной соли (натрий-цинк-уранилацетат) также применяют спирт, потому что соответствующие соли заметно растворимы в воде. [c.47]

    Ввиду электроотрицательного потенциала, электроположительные металлы— медь, сурьма, висмут, мышьяк при анодном растворении таллия должны остаться на аноде, в сульфатных растворах свинец также перейдет в осадок. Цинк, железо, кадмий и частично олово перейдут в раствор. Наиболее опасными примесями являются олово и кадмий, поэтому их следует удалять при предварительной очистке раствора, что вполне возможно, если использовать плохую растворимость Т1С1 и хорошую растворимость ТЬСОз. [c.563]

    Фильтрование. Эффективна очистка галлия от ряда примесей фильтрованием через пористую перегородку. Способ основан на очень малой растворимости большинства металлов в галлии при температуре, близкой к температуре его плавления. При этой температуре примеси в основном находятся в виде взвеси мелких частичек — как самого элемента, так и его окислов или соединений с галлием ( uGaa, FeGaa, NiGa4 и т. п.). По данным [ПО], растворимость при 50° у меди 2,8-10 %, у никеля 6,0-10 , у титана 2,2-10 , у хрома 1,2-10 и у железа 1,0-10" %. Фильтруют через стеклянную или винипластовую перегородку. Оптимальный диаметр пор 30—50 мк [3]. Этим способом содержание примесей железа, меди, кремния и многих других можно снизить до тысячных и даже десятитысячных долей процента. Цинк и свинец при фильтровании не удаляются [108]. [c.264]

    В качестве примера электрогравиметрического определения рассмотрим определение меди. Торранс и Дил рекомендуют проводить электролиз в солянокислом растворе с анодными деполяризаторами, устанавливая катодный потенциал на достаточно отрицательном уровне (—0,40 в относительно насыщенного каломельного электрода), чтобы исключить образование растворимых хлорокомилексов меди (I). Лингейноднако, считает, что электролиз в тартратном буфере с pH 4—6 дает лучшие результаты, чем в солянокислом растворе. Метод позволяет определять медь иепосредственно во всех наиболее распространенных сплавах, содержащих, например, сурьму, мышьяк, свинец, олово, никель и цинк, ири этом он нисколько не уступает в точности многим другим, более трудоемким методам. [c.354]

    Тугоплавкие металлы применяют в электронной и инструментальной промышленности. Благородные металлы используют в электронике, электротехнике и в некоторых других специальных целях. Цинк используют в виде растворимых анодов и защитных электроосажденных покрытий, а свинец — в виде анодов в системах защиты с наложенным током. Из кадмия получают высококачественные защитные покрытия на сталп. Олово, обладающее высокой стойкостью в морских средах, редко применяют в виде металла, но оно входит в распространенные сплавы. [c.160]

    С углеродом в восстановительной среде молибден реагирует, образуя карбиды. Диффузия углерода в молибден начинается ниже 1000°, что делает металл хрупким. Окись углерода и углеводороды при высокой температуре также карбидизируют молибден. Двуокись углерода при повышенной температуре окисляет его. Растворимость водорода в молибдене растет с повышением температуры до 0,5 см в 100 г.. Расплавленные натрий, калий, литий, галлий, свинец, висмут в отсутствие окислителей не действуют на молибден даже при значительной температуре. Расплавленные олово, алюминий, цинк, железо и некоторые другие металлы активно реагируют с ним. [c.162]

    Взаимодействие растворов щелочных силикатов с растворимыми солями других поливалентных металлов, таких как цинк, кадмий, медь, никель, железо, марганец, свинец и другие, во многом протекает аналогично взаимодействию с солями щелочноземельных металлов. Образование студенистых осадков малорастворимых гидроксидов металлов происходит еще более легко и также способствует созданию мембран на границах смешиваемых фаз. Образование кристаллических продуктов тоже маловероятно ввиду полимерности не только анионов, но и катионов. Редкое исключение составляет относительно легко кристаллизующийся силикат меди, образующийся при взаимодействии щелочных силикатов с растворами сульфата или хлорида меди. В местах контакта фаз pH резко изменяется, так как ионы гидроксила поглощаются катионами поливалентного металла, что способствует полимеризации кремнезема. Поверхность студенистых осадков более развита и склонность к адсорбции и соосаждению различных ионов больше. Продукты взаимодействия представляют собой смесь гидроксидов, силикатов и основных солей в аморфном состоянии, причем соотношение между ними определяется теми же условиями проведения реакции. Оксиды цинка и свинца, в том числе сурик РЬз04, осаждают кремнезем из растворов жидких стекол, причем их активность зависит от температурной обработки, которой они подвергались. Хорошо сформированные состарившиеся окислы большинства тяжелых металлов практически инертны в щелочных силикатных системах. С высшими окислами молибдена и вольфрама, находя-, щимися в ионной форме молибдатов и вольфраматов, в кислых средах мономерный кремнезем образует гетерополикислоты. Полимерные и коллоидные формы кремнезема взаимодействуют с молибденовой кислотой медленней по мере образования мономерных форм, на этом основано условное деление общего содержания кремнезема в жидких силикатных системах на растворимый (а-5102) и коллоидный. Хроматы и бихроматы осаждают кремнезем из растворов щелочных силикатов, при этом отмечается появление полезных технических свойств осажденных форм. [c.62]

    Амфотерные м1вталлы, такие как цинк, алюминий, свинец, подвергаются сильной коррозии как в кислых, так и в щелочных средах вследствие растворимости их окислов и в кислотах и в щелочах. Скорость коррозии железа и магния очень мала в щелочных растворах, в которых образующиеся гидроокиси этих металлов нерастворимы и дают прочную пленку на поверхности металла. Никель и кадмий устойчивы в нейтральных и щелочных растворах и быстро корродируют в кислых. [c.227]

    В качестве моющих присадок применяются сложные хим. соединения, растворимые в масле, в состав к-рых входят различные металлы, напр, кальций, барий, алюминий, кобальт, цинк, свинец и др. Лакообразование и осадкообразование в двигателях зависят не только от моющих свойств масла, но в значительной степени и от окислительных свойств поэтому моющие присадки обычно применяют в комбинации с про-тиБоокислительными присадками. Из хороших моющих присадок известны МНИ-ИП-22, НП-360, циатим-339 и др. [c.359]

    БРОНЗОГРАФЙТ (от бронза и гра фат) — пористый спеченный материал на основе меди с частицами графита вид антифрикционного материала, у которого норы заполнены минеральным или синтетическим маслом. Широкое применение нашел в 30—40-х гг. 20 в. Микроструктура Б. состоит из альфа-твердого раствора олова в меди, включений эвтектоида, содержаш,его этот раствор и хим. соединение lsiSng, включений графита и системы пор. Б. содержит растворимые (напр., олово, цинк) и малорастворимые (свинец) в меди элементы (табл.). Наличие графита и заполненных маслом нор обусловливает низкий коэфф. трения Б. но стали (0,04— 0,05), его большую износостойкость, стойкость к интенсивному тепловыделению, повышенным давлению и скорости скольжения. Пористость Б. 15—22%, масловпитываемость 1—2%, предел прочности яа растяжение 3,5—7 кгс/мм , предел прочности на срез 10—15 кгс/мм , предел прочности на сжатие 40—55 кгс мм , НВ = 25-1- 50, плотность 5,0— [c.161]

    Меркаптаны представляют собой слабо ассоциированные соединения поскольку сера менее электроотрицательна, чем кислород, она менее способна к образованию водородных связей. Неспособность к образованию водородных связей с водой является причиной того, что меркаптаны значительно хуже растворяются в воде, чем спирты. Особенностью летучих меркаптанов является их отвратительный запах. В отличие от спиртов меркаптаны обладают кислыми свойствами и образуют растворимые в воде соли со щелочными металлами и нерастворимые соли с тяжелыми металлами (ртуть, свинец, цинк). От этого их свойства и происходит название меркаптаны (лат. mer urium ap-tans — связывающий ртуть). [c.365]

    Хорошо растворимы в магнии и в твердом, и в жидком состояниях металлы с плотно застроенной ( -оболочкой, к которым, например, oтнoJ сятся цинк, кадмий, свинец, олово, висмут, таллий, индий. Наибольшей взаимной растворимостью отличаются магний и кадмнй, у которых наименьшее различие в атомных диаметрах и строении электронных оболочек. Перечисленные металлы образуют с магнием ряд соединений, которые в случае металлов IV и V групп подчиняются правилам валентности (например, МдгБп, М гВ и др.). С металлами 11 и III [c.102]


Смотреть страницы где упоминается термин Свинец растворимость в цинке: [c.587]    [c.370]    [c.587]    [c.690]    [c.1169]   
Основы общей химии Том 3 (1970) -- [ c.45 , c.46 ]




ПОИСК





Смотрите так же термины и статьи:

Цинк свинца



© 2025 chem21.info Реклама на сайте