Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Упаковки, плотность максимальна

    Наличие неподеленных пар электронов у кислорода и смещение обобществленных электронных пар от атомов водорода к атому кислорода обусловливает образование водородных связей между кислородом и водородом. Водородные связи обусловливают ассоциацию молекул воды в жидком состоянии и некоторые ее аномальные свойства, в частности, высокие температуры плавления и парообразования, высокую диэлектрическую проницаемость, максимальную плотность при 4°С, а также особую структуру льда. В кристаллах льда молекула воды образует четыре водородные связи с соседними молекулами, что приводит к возникновению тетраэдрической кристаллической структуры. Расположение молекул в таком кристалле отличается от плотной упаковки молекул, в решетке много свободных мест, поэтому лед имеет относительно невысокую плотность. [c.83]


    Таким образом, т. пл. металлов триады палладия меняется в интервале 2300—1700°С, а триады платины — в интервале 3000— 1800° С, т. е. в обеих триадах слева направо наблюдается понижение температуры плавления металла. Самым тугоплавким является осмий. Он же имеет самую высокую удельную массу (22,7 г/см ) не только среди платиновых металлов, ио и среди всех известных на Земле веществ. Даже металлы группы трансурановых элементов менее плотные. Очевидно, максимально возможная для металлов плотность у осмия определяется зависящей от электронного строения возможностью образования большого числа связей металл — металл (характер их близок к ковалентному) и возникающей в результате очень плотной упаковкой атомов в металлическом осмии. [c.154]

    Кристаллическое состояние полимеров характеризуется наличием дальнего порядка в расположении звеньев и взаимной ориентацией полимерных цепей, в результате чего плотность упаковки макромолекул максимальна. Подвижность звеньев полимерных молекул кристаллического полимера практически отсутствует, поэтому для них характерны определенные фиксированные конформации. [c.54]

    Известно, что значение Л 1 в случайно упакованной структуре шаров произвольно изменяется от 4 до 12 и в среднем равно 8 0,5[6]. Причем нижний и верхний пределы N1 соответствуют минимальной и максимальной плотностям регулярных структур О = 0,34 и 0,74 соответственно. В работе [7] описан метод визуализации агрегатов частиц, входящих в первую координационную сферу (рис. 5), что позволило различать те или иные характерные особенности структуры упаковок. В этой связи особенно показательны агрегаты с координационным числом > 8. У них отчетливо видна структура плотнейшей упаковки с разным числом точечных дефектов — вакансий, ие занятых шарами. Агрегаты удобно было рассматривать, ориентируя их наиболее заселенный гексагональный слой, содержащий до 7 частиц, в горизонтальное положение. Тогда сверху п снизу в лунках между шарами укладывалось максимум но 3 шара. Когда верхние и нижние [c.20]

    Иногда ПКФ рассчитывают по этой формуле, разделяя газовую фазу на шары-ячейки и на шары-агрегаты [304]. Исключительная приближенность такого метода не вызывает сомнения уже хотя бы потому, что форма пузырьков, агрегатов и струй газа далека от формы шара, а плотность их упаковки далека от максимальной. Некий средний диаметр пузырька определяется чаще всего с помощью масштабной фотографии или кинофотосъемки. [c.70]

    Для осуществления кристаллизации требуется соблюдение ряда условий. Цепь полимера должна иметь регулярное (стереорегулярное) строение. При температуре кристаллизации цепи полимера должны обладать достаточной гибкостью для обеспечения перемещения, образования складок и укладывания макромолекул в кристаллическую структуру. Кристаллизация жестких цепей затруднена. В кристаллической структуре достигаются максимальные плотность упаковки и энергия межмолекулярного взаимодействия. При кристаллизации возможны различные виды плотной упаковки распрямленных цепей, складчатых цепей, спиралевидных макромолекул. Полярные заместители в цепях оказывают противоположное влияние. Увеличивая межмолекулярное притяжение, они способствуют плотной упаковке и затрудняют ее, уменьшая гибкость цепей. Характер упаковки будет зависеть от преобладания того или иного вида эффекта. [c.138]

    Поверхность используемых на промышленных установках мембран очень велика. Кроме того, газ поступает на разделение при высоких давлениях. Поэтому особенно важно обеспечить максимально высокую плотность упаковки мембран в аппаратах. В промышленности преимущественно используют рулонные и половолоконные модули. [c.174]


    Так, при погружении пленок из воздушной среды в водную (рис. 2.5) ток значительно уменьшается вследствие более низкой концентрации кислорода в водной среде. Установлено также, что полиэтиленовые пленки (кривая 1) менее проницаемы для кислорода, чем поливинилхлоридные (кривая 2). Последнее связано со структурными особенностями полимеров — гибкостью цепи, плотностью упаковки цепей молекул и т. д. На рис. 2.6 приведены зависимости силы максимального диффузионного тока кислорода от времени и толщины полиэтиленовой пленки. [c.29]

    В порошках и компактных твердых телах, если последние не являются монокристаллами с предельно плотной упаковкой, всегда протекают процессы, ведущие к уплотнению вещества иногда они идут с исчезающе малой скоростью, однако всегда ускоряются с повышением температуры. Здесь проявляется общая тенденция к переходу от менее стабильных состояний к более стабильным, которые характеризуются минимальной поверхностью, максимальной плотностью и равновесной концентрацией дефектов в кристаллической решетке. [c.213]

    Имеющиеся экспериментальные данные свидетельствуют о том, что трехмерные структуры белков характеризуются плотнейшей упаковкой атомов. Коэффициенты упаковки белковых молекул в нативном состоянии имеют значения от 68 до 82%. Для сравнения напомним, что у правильных сферических тел этот коэффициент равен 74%, а у молекул воды и циклогексана - 58 и 44% соответственно. По плотности упаковки атомов белковые молекулы близки кристаллам малых органических молекул (70-78%). Нативные структуры белков имеют также незначительные коэффициенты сжимаемости, близкие, например, коэффициентам сжимаемости олова и каменной соли. Высокая компактность глобулярных белков подтверждается большой плотностью, малой вязкостью и малыми молекулярными объемами нативных белков в растворе. Так, наблюдаемые у них величины плотности (1,3-1,5 г/см ) выше, чем у сухих белков и близки величинам плотности кристаллов низкомолекулярных органических соединений. Это свойство пространственных структур белковых молекул безупречно с физической точки зрения и очень образно передает определение их как "апериодические кристаллы" - термин, использованный Э. Шре-дингером для характеристики состояния хромосом [52]. Таким образом, есть все основания заключить, что нативная конформация белка представляет собой плотно упакованную структуру с максимальным числом внутримолекулярных контактов между валентно-несвязанными атомами. [c.102]

    Поскольку наиболее симметричное расположение 12 соседей (с пкосаэдрической координацией центрального атома) не приводит к наиболее плотной из возможных трехмерных упаковок, возникает вопрос, какой из бесконечного числа вариантов расположения 12 соседей ведет к более плотным упаковкам и какова максимальная плотность бесконечной шаровой упаковки. В 1883 г. Барлоу показал, что существуют две координационные группы, которые по отдельности или в комбинации друг с другом приводят к бесконечным шаровым упаковкам с одинаковой плотностью 0,7405. Одна из этих двух координационных групп — кубооктаэдр, а другая — родственный ему многогранник (скрученный, или гексагональный , кубооктаэдр), получающийся из половины кубооктаэдра путем отражения в плоскости сечения, параллельной треугольному основанию (рис. 4.5). Такое расположение ближайших соседей в шаровых упаковках возникает прн наиболее компактном способе наложения плотных плоских слоев, упомянутых в начале этого раздела. Интересно заметить, ITO еще не доказана невозможность существования некоторой Неизвестной бесконечной упаковки шаров с плотностью выше Чем 0,7405. С другой стороны, Миньковскому удалось доказать. Что упаковка, основанная на кубооктаэдра (кубическая плотнейшая упаковка), является плотнейшей решеточной упаковкой одинаковых шаров. (Решеточная упаковка обладает следующими свойствами. Если на любой прямой липни находятся два ша-Ра на расстоянии а, то шары находятся также во всех точках [c.181]

    Если диаметр частиц меньше 20 мкм (либо плотность наполнителя колонки невелика), используют суспензионный или мокрый способ заполнения. Так называемый способ динамической суспензии заключается в том, что покрытый неподвижной фазой твердый носитель суспендируют в растворителе, используемом в качестве подвижной фазы, и под давлением подают в колонку. После заполнения колонки еще в течение 2 ч пропускают растворитель для максимальной упаковки колонки. [c.68]

    Пропускать поток растворителя необходимо в течение не менее получаса для упаковки колонки с максимальной плотностью. [c.78]

    Из диаграммы, приведенной на рис. 5, видно что при увеличении размера частиц повышается удельное электросопротивление засыпи кокса (благодаря росту порозности) и в процессе регенерации тепла преобладает действие локальных токов. Более высокая плотность упаковки кокса класса <1 мм обеспечивает ему максимальную проводимость и повышает интенсивность замкнутых токов. Однако учитывая, что абсолютное значение УЭС засыпи кокса класса <1 мм относительно велико, эффективность его нагревания зна- чительно ниже по сравнению с другими классами. [c.9]

    Физические свойства ароматических углеводородов (табл. 12) связаны с числом атомов углерода и взаимным расположением заместителей в молекуле. Первые члены рядов имеют максимальную плотность. Все гомологи, более богатые водородом, обладают меньшей плотностью. Плотность всегда выше у тех гомологов, у которых одинаковые заместители занимают смежные (орто) положения, что объясняется, очевидно, более плотной упаковкой молекулы. Для ароматических углеводородов характерен максимальный среди других углеводородов показатель преломления (это свойство используется в аналитических целях). [c.76]

    Наиболее эффективная упаковка приводит к максимальной плотности. Плотность - доля общего пространства, занятая упаковывающимися единицами. Будут рассматриваться только такие упаковки, в которых каждый шар находится в соприкосновении по крайней мере с шестью соседями. Плотности некоторых упаковок приведены в табл. 9-6. Существуют устойчивые расположения с меньшим числом соседей, что соответствует меньшим координационным числам. Это возможно только при наличии направленных связей. В нашем обсуждении существование химических связей вообще не является необходимым условием. [c.442]

    Хотя максимальная плотность упаковки сфер одинакового диаметра составляет 74 % общего объема, содержание дисперсной фазы может превысить этот предел, так как капельки отличаются по размеру и могут деформироваться. Однако, когда объемная доля дисперсной- фазы превысит 75 %, обеспечить устойчивость эмульсии становится трудно. [c.279]

    При плавлении льда его структура частично сохраняется и в жидкой воде однако при постепенном повышении температуры происходит разрушение все большего числа водородных связей. Плотность воды оказывается максимальной при 4°С, когда агрегаты ее молекул образуют наиболее хаотическую упаковку. По мере разрушения водородных связей при повышении температуры эти агрегаты становятся все меньше, но кинетические эффекты, обусловленные повышением тепловой энергии, вызывают уменьшение плотности вещества. При нормальных условиях и температуре кипения воды, которая оказывается гораздо вьппе, чем можно было бы ожидать по ее молекулярному весу, жидкая вода превращается преимущественно в изолированные молекулы [c.143]


    В гл. 10 было рассказано о том, что при кристаллизации воды происходит образование водородных связей между ее молекулами. При плавлении некоторые из этих связей, хотя далеко не все, разрушаются. При последующем нагревании воды происходит дальнейшее разрушение водородных связей, и при 4""С плотность воды оказывается максимальной, так как при этой температуре достигается наиболее плотная упаковка маленьких ассоциированных групп. Дальнейшее нагревание воды приводит к образованию еще более мелких ассоциированных групп, однако увеличивающаяся скорость движения молекул (кинетическая энергия) вызывает расширение воды, и в результате ее плотность снижается по мере повышения температуры. [c.191]

    Федоре [214] принял во внимание максимальную плотность упаковки сферических частиц в суспензии, что позволило ему получить уравнение для очень высоких концентраций золей. Объемная доля упакованных произвольным образом, но плотно, сферических частиц составляет 0,63. [c.492]

    Не вполне очевидно, будет ли такая решеточная модель даже для больших р (длинные молекулы) на самом деле приводить к переходу из изотропной фазы в нематическую при достаточно больших плотностях. Известно, что в двумерной задаче с димерами (р = 2) упорядочения не получается даже при максимальной (плотная упаковка) плотности [34, 35]. Этот вопрос в действительности является более общим при любом р и плотности, соответствующей плотной упаковке, нематиче- [c.56]

    Для многих химических элементоа (особенно металлов) характерны решетки куба с центрированными гранями (рис. 174) и типа гексагональной плотной упаковки, примером которой может служить показанная на рис. 175 решетка металлического магния. Координационное число обеих структур равно двенадцати. Обе они допускают упаковку шаров максимально возможной и притом одинаковой плотности. Такие упаковки показаны на рис. 176. [c.358]

    Увеличение полидисперсности приводит к увеличению максимальной плотности упаковки (равной 0,74 для моноднсперсной системы) и к понижению вязкости. Недавно было показано [32], что увеличение полидисперсности частиц в реальных условиях, например в результате агломерации, приводит к сравнительно небольшому увеличению плотности упаковки. Значительно большее влияние на понижение вязкости при этом оказывает, во-первых, уменьшение количества воды, иммобилизованной на поверхности частиц, и, во-вторых, возможность более свободного скольжения соседних слоев такого латекса по сравнению с исходным латексом. С понижением температуры вязкость латекса возрастает [30, 33— 35] вплоть до потери им текучести. Так называемая температура желатинизации повышается при введении в латекс гидрофильных [c.589]

    С повышением размеров сферолитов уменьшается плотность их упаковки и Стост уменьшается. Некоторое возрастание ст при дальнейшем повышении диаметра сферолитов связано с изменением дефектности структуры ПП. Если при ориентации аморфных полимеров имеет место увеличение их ст, то при вытяжке кристаллических полимеров из-за переориентации и частичного разрушения ламелей. и фибрилл возникает анизотропия укладки структурных элементов и изменение ст (иногда на 2—3 порядка). При использовании полимерных материалов в качестве диэлектриков стремятся к максимальному уменьшению их ст. Для достижения этого полимеры должны содержать минимальное количество ионогенных примесей, их е должна быть по возможности минимальной, сшивание макромолекул должно приводить к повышению Тс и, наконец, они должны иметь (после кристаллизации или ориентации) оптимальную надмолекулярную структуру, которой бы соответствовала наименьшая для полимера данного химического состава и молекулярного строения о. [c.204]

    Цепи молекул белков и полипептидов построены из разнообразных остатков /-аминокислот. Помимо соединяющих их пептид )ых связей —СО—ЫН— аминокислотные остатки связаны большим числом водородных связей с удаленными остатками в результате их конформации. Условия максимального насыщения водородных, связей и максимальной плотности упаковки аминокислотных остатков приводят к свертыванию цени в предельное устойчивое состояние по типу а-спирали, обеспечивающему максимальное удаление боковых радикалов. Другим устойчивым предельным состояН 1см является неупорядочное свертывание — статистический клубок. [c.287]

    Следует отметить, что в отличие от термодинамических условий кристаллизации, которые уже в самом общем виде могут быть описаны строго математически, структурные условия носят качественный характер и в каждом отдельном случае требуют конкретизации. В самом деле, макромолекул абсолютно регулярного строения в природе практически не существует. В любых молекулярных цепях существуют нарушения регулярности, и вопрос о кристаллизуе-мости сводится к установлению максимально допустимого уровня таких нарушений и природы полимера и для разных случаев варьируется в весьма широких пределах. То же относится и к требованию, касающемуся плотности молекулярной упаковки. Для боль-щинства кристаллических полимеров коэффициенты молекулярной [c.183]

    Хотя водородные связи слабее ковалентных и ионных, они значительно прочнее вандерваальсовых связей и обусловливают ассоциацию молекул воды в жидком состоянии и некоторые аномальные свойства воды, в частности высокие температуры плавления и парообразования, высокую диэлектрическую проницаемость, максимальную плотность при 4 °С, а также особую структуру льда. В кристаллах льда молекула воды образует четыре водородные связи с соседними молекулами воды (за счет двух неподеленных электронных пар у кислорода и двух протонов), что обусловливает возникновение тетраэдрической кристаллической структуры льда. Расположение молекул в таком крис-. талле отличается от плотной упаковки молекул, в решетке много свободных мест, поэтому лед имеет относительно невысокую плотность. При высоких давлениях (выше 200 МПа) обеспечивается более плотная укладка молекул воды и возникает еще несколько кристаллических модификаций льда. При плавлении происходит частичное разрушение структуры льда и сближение молекул, поэтому плотность воды возрастает. В то же время повышение температуры усиливает движение молекул, которое снижает плотность вещества. При температуре выше 4 °С последний эффект начинает превалировать и плотность воды понижается. [c.372]

    Пространственная структура внутренней сферы комплекса определяется, в основном, координационным числом и стремлением к достижению максимальной компактности (плотности) упаковки частиц. Если представить себе комплексообразователь находящимся в центре соответствующей фигуры, то для координационного числа 6 характерно расположение лигандов по углам октаэдра (рис. Х1У-8, а), а для координационного числа 4 — по углам тетраэдра (рис. Х1У-8, б). Октаэдрическое расположение лигандов было установлено, в частности, для иона [Pt l6] (рис. Х1У-9). При координационных числах 4 и ниже значительную роль для относительной устойчивости того или иного пространственного расположения играют индивидуальные особенности комплексообразователя и лигандов. Поэтому, например, для координационного числа 4, кроме тетраэдрического, становится возможным и расположение лигандов по углам квадрата (с комплексообразователем в центре), характерное, в частности, для производных двухвалентной платины (рис. Х1У-10). [c.456]

    В случае озокеритов, например образца жильного озокерита, в роли максимума выступает минимум бимодального распределения (рис. 71, а), представленный гомологами с и=25,26 и 27. П)мологи по обе стороны от минимума группируются (суммируются) таким образом, что их суммарный параметр с соответствует удвоенному параметру с гомолога и=27, причем и в этом случае максимальная плотность упаковки реализуется в варианте сверхпериодической (четырехслойной) ромбической ячейки. Что касается другого образца — озокерита из россьшей, то на его хроматограмме также можно вьщелить два максимума и, соответственно, минимум между ними, если усреднить небольшие максимумы и минимумы полимо-дального распределения гомологов. [c.293]

    В молекулах белков (альбумины, глобулины, ферменты и др.) и полипептидов цепи построены из большого количества разнообразных остатков -ами-нокислот. Помимо последовательно соединяющих их плоскорасположенных пептидных связей СО ЫН—, аминокислотные остатки связаны большим количеством водородных связей с удаленными остатками. Условия максимального насыщения внутримолекулярных водородных связей и максимальной плотности упаковки аминокислотных остатков в цепи, при соблюдении обычных валентных углов и расстояний,—приводят к характерному свертыванию цепи в спирали. По теории Паулинга и Корея, в глобулярных белках, а-кера-тине и некоторых полипептидах свертывание происходит по типу а-спирали (рис. 92), где на 3 витка спирали приходится по 11 остатков и через каждый третий аминокислотный остаток между пептидными группами сб- [c.237]

    Повышение темйературы воды действует двояко вызывает нарушение регулярной структуры и приводит к тепловому расширению. В интервале температур от О до 4 С (плавление льда) происходит разрушение части водородных связей, т. е. нарушается структура льда, достигается более плотная упаковка молекул в результате размещения отдельных моле101 л воды в пустотах оставшихся агрегатов. В этом интервале температур фактор нарушения структуры преобладает над тепловым расширением, и плотность воды повышается, достигая максимального значения при 3,98 °С. При 3,98 °С оба фактора взаимно уравновешиваются. Дальнейшее нагревание воды до 100 °С сопровождается нормальным снижением плотности, так как преобладает действие теплового расширения. Эта аномалия обусловливает возможность жизни в водоемах, замерзающих в зимнее время. Посколыо лед легче воды (его плотность меньше), он располагается на поверхности и защищает лежащие ниже слои воды от промерзания. При, дальнейшем понижении температуры увеличивается толщина слоя льда, но температура воды подо льдом остается на уровне 4 С, что позволяет водным организмам сохранять жизнь. [c.14]

    Аморфное состояние некристаллизующихся поликарбонатов обусловлено не жесткостью полимерной цепи, а невозможностью осуществления надлежащей плотности упаковки, т. е. отсутствием обязательного конформа-ционного условия кристаллизации [6]. Кинетика кристаллизации поликарбонатов на основе бисфенола А была изучена по скорости роста надмолекулярных образований с помощью электронного микроскопа [6], по величине инкубационного периода кристаллизации поликарбоната из растворов в смесях растворитель — осадитель при помощи нефелометра [7], дилатометрически по уменьшению удельного объема в течение длительного периода времени при 170—205° [8]. Было найдено, что заметная кристаллизация поликарбоната происходит при температуре не ниже 175°С. Максимальная степень кристалличности, определенная изотермической кристаллизацией при 205 °С, составляет 33%. Данные о кинети- [c.105]

    Полиэдр Вороного позволяет определить локальную плотность упаковки. Локальные плотности упаковки были впервые определены Ричардсом [63]. Для этой цели полипептидная цепь была разделена на небольшие атомные группы, такие, как метил, метилен, амид, гидроксил, и другие, содержащие один более тяжелый атом и до трех атомов водорода. Ароматические циклы и гуанидиниевая группа Arg также рассматривались как отдельные группы. Из рентгеноструктурных данных были определены центры этих групп. Затем пространство было разбито на полиэдры Вороного, как показано на рис. 3.4. Локальная плотность упаковки при данном центре есть отношение объема атомной группы к соответствующему занимаемому объему, т. е. к объему окружающего полиэдра Вороного. Чтобы избежать ошибок, связанных с учетом поверхности, в рассмотрение был включен монослой молекул НгО, находящихся на поверхности. Таким образом, в полный полиэдр Вороного были включены только атомы белка, но не фактические молекулы HjO. Это поясняется на рис. 3.4, где А — центр атома белка, а , С и D — центры фактических молекул Н2О (см. также рис. 1.9). Эта процедура позволяет попутно определить площадь молекулярной поверхности. Лучше всего воспользоваться тем монослоем поверхностных молекул воды, который содержит их максимальное количе-< тво. Однако поскольку определить такой оптимальный слой трудно, то выбранный слой обычно содержит меньшее по сравнению с [c.55]


Смотреть страницы где упоминается термин Упаковки, плотность максимальна: [c.384]    [c.257]    [c.141]    [c.137]    [c.137]    [c.299]    [c.145]    [c.301]    [c.36]    [c.31]    [c.27]    [c.343]    [c.217]    [c.33]    [c.173]    [c.440]   
Основы общей химии Том 3 (1970) -- [ c.206 ]




ПОИСК







© 2024 chem21.info Реклама на сайте