Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цезий взаимодействие с водой

    Гидриды рубидия и цезия являются чрезвычайно химически активными веществами. Они воспламеняются на воздухе, содержащем следы влаги, самовоспламеняются в атмосфере хлора и фтора, взаимодействуют с бромом (КаН с бромом на холоду не реагирует). В отличие от гидридов натрия и калия гидриды рубидия и цезия взаимодействуют с сероуглеродом. При нагревании с азотом или аммиаком гидриды образуют амиды, а с фосфором — фосфиды рубидия и цезия. Важная в практическом отношении реакция гидридов с водой протекает очень бурно с выделением водорода  [c.82]


    Химическая активность цезия необычайна. Он очень быстро реагирует с кислородом и не только моментально воспламеняется на воздухе, но способен поглощать малейшие следы кислорода в условиях глубокого вакуума. Воду он бурно разлагает уже при обычной температуре при этом выделяется много тепла, и вытесняемый из воды водород тут же воспламеняется. Цезий взаимодействует даже со льдом при — 116° С. Его хранение требует большой предосторожности. [c.96]

    В- А, I Лескова (1947 г.) можно считать, что взаимодействие сравнительно большого катиона рубидия (или цезия) с водой и разными неводными растворителями очень мало. Поэтому химический потенциал этого иона и, следовательно, и гальвани-потенциал на границе рубидий/раствор для всех сред примерно одинаковы. Тогда, если потенциалы всех остальных электродов в каждой среде относить к рубидиевому электроду сравнения, в первом приближении получают универсальную шкалу потенциалов. [c.68]

    При взаимодействии калия с водой происходит воспламенение выделяющегося водорода. Реакция рубидия и цезия с водой сопровождается взрывом. [c.211]

    Щелочные металлы — калий, натрий, рубидий и цезий— взаимодействуют с водой с выделением водорода и значительного количества тепла  [c.76]

    Калий и его аналоги располагаются в самом начале ряда напряжений. Взаимодействие калия с водой сопровождается самовоспламенением выделяющегося водорода, а взаимодействие рубидия и цезия — даже взрывом. [c.491]

    Объясните резкое возрастание активности взаимодействия щелочных металлов с водой при переходе от лития к цезию. Для ответа на вопрос используйте данные таблицы 5 (см. приложение), причем не только такие, как изменение энтальпии взаимодействия щелочных металлов с водой и гидратации их ионов, но и такие физические характеристики, как температура плавления и плотность. [c.159]

    Килограмм равен массе международного прототипа килограмма Моль равен количеству вещества системы, содержащей столько же структурных элементов, сколько содержится атомов в 0,012 кг углерода-12 Секунда равна 9192631770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133 Кельвин равен 1/273,16 части термодинамической температуры тройной точки воды. Это наименование и его обозначение применяются также для выражения интервала и разности температур Ампер равен силе неизменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади сечения, расположенным в вакууме на расстоянии 1 м один от другого, вызвал бы на участке проводника длиной 1 м силу взаимодействия, равную 2-10 Н Ньютон равен силе, сообщающей телу массой 1 кг ускорение 1 м/с в направлении действия силы [c.477]

    Приведенные данные показывают, что ряд свойств как физических, так и химических закономерно изменяется с возрастанием порядкового номера элемента и увеличением числа застраиваемых электронных слоев п в атоме (соответственно номеру периода, в котором расположен данный щелочной металл). Так, радиус атома возрастает, а энергия ионизации падает. В связи с этим химическая активность повышается от Ы к Сз и Рг. Это отчетливо проявляется в процессе окисления металла. Так, литий сравнительно стоек, а, например, цезий самовоспламеняется на воздухе. Литий спокойно взаимодействует с водой, калий при этом самовоспламеняется, а у цезия реакция идет со взрывом. Наиболее активен щелочной металл франций, энергия ионизации его атома наименьшая (3,98 эв). Электролитическая диссоциация гидроксидов ЭОН (щелочей) возрастает в той же последовательности (от ЫОН к СзОН и РгОН). [c.404]


    Эта реакция экзотермична и за счет выделяющегося тепла происходит воспламенение водорода и металла, что характерно для наиболее активных калия, рубидия и цезия. Реакция с натрием протекает менее интенсивно и сопровождается лишь плавлением металла на поверхности воды. Литий, как наиболее слабый восстановитель, реагирует с водой еще менее активно, чем натрий, что объясняется наименьшим межатомным расстоянием в кристаллической решетке (см. рис. 7), хотя по величине электродного потенциала литий стоит впереди других щелочных металлов. Водяные пары подобным же образом взаимодействуют со щелочными металлами. [c.36]

    Ионы, имеющие большие заряды [железо (III), алюминий], характеризуются и значительными величинами энтальпии и энтропии. Теоретическое вычисление теплот гидратации связано с учетом целого ряда слагаемых. После первых, грубо приближенных расчетов по Борну было сделано много попыток так или иначе улучшить теоретический метод. К. П. Мищенко и А. М. Сухотин, исходя из предположения, что эффективный радиус молекулы воды в гидратной оболочке равен 0,193 нм, предложили метод расчета, в котором были приняты во внимание экзоэффекты взаимодействия иона с жесткими диполями воды, а также ориентационной и деформационной поляризации диполей воды, дисперсионные силы между ионом и молекулами воды, взаимное отталкивание диполей в гидратной сфере, отталкивание иона и диполей при перекрытии их электронных оболочек, поляризация растворителя гидратным комплексом и взаимодействие между водой и гидратным комплексом, отвечающее экзоэффекту. Большое число факторов, принятых во внимание в этих расчетах, делает их результаты наиболее надежными. Между прочим указанные авторы пришли к выводу, что тепловое движение не может существенно влиять на координационные числа гидратации вероятность того, что данная молекула в гидратном слое покинет его и оставит свободное место в гидратной оболочке иона, колеблется по порядку величины от 10 (ион лития) до 10 (ион цезия), т. е. ничтожно мала. [c.255]

    Но нами так и не получен ответ на вопрос 7-5, почему же при переходе от лития к цезию реакционная способность взаимодействия с водой явно возрастает. В табл. 7.5 даны температуры плавления щелочных металлов. Хотя это и не имеет прямого отношения к ответу на вопрос, нарисуйте зависимость температур плавления щелочных металлов от их места в периодической системе. [c.338]

    Энтальпии растворения кристаллических гидроокисей в воде численно возрастают при переходе от лития к цезию, т. е. в том же направлении, что и усиление реакционной способности взаимодействия металла с водой. [c.363]

    Активность взаимодействия металлов с водой (и другими веществами) увеличивается от лития к цезию. Щелочные металлы также активно реагируют с кислотами. [c.119]

    Рубидий и цезий — самые реакционноспособные металлы их нормальные потенциалы имеют весьма высокое отрицательное значение (—2,93). Соединяются с кислородом мгновенно, воспламеняясь взаимодействие начинается при весьма низком давлении основные продукты реакции — перекисные соединения. С водой реагируют чрезвычайно бурно, образуя гидроокиси МеОН и вытесняя водород, который моментально вспыхивает. Эта реакция с заметной скоростью протекает даже ниже —100° [6]. Таким образом, они вытесняют водород не только из жидкой воды, но и изо льда. [c.84]

    Активность взаимодействия металлов с водой увеличивается от лития к цезию. Так, калпй при взаимодействии с водой воспламеняется, а рубидий и цезий реагируют со взрывом. [c.242]

    Водород самовоспламеняется только в том случае, если кусок металла по объему больше горошины (особенно для натрия). Взаимодействие указанных металлов с водой иногда сопровождается взрывом с разбрызгиванием расплавленного металла. Иэ указанных металлов наибольшей активностью обладают рубидий, цезий и калий. [c.120]

    Восстановительная способность щелочных металлов настолько велика, что они вытесняют водород даже из воды, образуя сильные основания, например 2Ыа- -2Н20 = H2 + 2NaOH. Калий с водой реагирует с воспламенением выделяющегося водорода. Взаимодействие рубидия и цезия с водой сопровождается взрывом. Щелочные металлы окисляются и водородом, образуя гидриды, например 2К+Н2 = 2КН. У атомов элементов первой основной подгруппы валентность в основном состоянии и в соединениях совпадает они, имея по одному неспаренному электрону, одновалентны. Степень окисления их в основном состоянии равна О, а в соединениях +1. [c.102]

    Среди веществ с по,чярными молекулами лучше других, за исключением аммиака, изучена адсорбция воды. Начальная изостерическая теплота адсорбции очень высокая, но уменьшается с увеличением заполнения. Опубликовано несколько работ, в которых тип обменного катиона в цеолитах X сопоставляется с теплотой адсорбции, служащей мерой спехщфичности. В работе Джигит и Киселева [129] показано, что калориметрически измеренные дифференциальные теплоты адсорбции воды зависят от энергии взаимодействия молекул как с обменными катионами, так и с отрицательными ионами кислорода каркаса. На рис. 8.25 представлена зависимость теплоты адсорбции воды от радиуса катиона при разных степенях заполнения полостей. Благодаря большому радиусу ионов калия, рубидия и цезия, взаимодействие молекул воды с катионами и ионами кислорода каркаса уменьшается. При больших величинах адсорбции молекулы воды взаимодействуют между собой с образованием водородных связей. Кроме того, с увеличением содержания в структуре воды катионы изменяют свои положения они гидратируются и смещаются в бо.льшие полости. [c.682]

    Цезий взаимодействует и с углеродом. Только самая совершенная модификация углерода — алмаз — в состоянии противостоять его натиску . Жидкий расплавленный цезий и его пары разрыхляют сажу, древесный уголь и даже графит, внедряясь между атомами углерода и образуя своеобразные, довольно прочные соединения золотисто-желтого цвета, которые в пределе, по-видимому, отвечают составу СбСзз. Они воспламеняются на воздухе, вытесняют водород из воды, а при нагревании разлагаются и отдают весь поглощенный цезий. [c.96]

    Жданов и сотр. [24] установили, что с увеличением радиуса катиона уменьшается частота колебаний ОН-групп, и объяснили эту зависимость поляризующим влиянием катионов на молекулы адсорбированной воды. Киселев и Лыгин обнаружили линейную зависимость между изменением частоты валентных колебаний и ионным радиусом катиона. Киселев и сотр. [120] исследовали также спектры молекул воды, адсорбированной на цеолитах Li-, К-, Na- и sX при различном заполнении. Они так же, как Берч и Хэбгуд, наблюдали в спектрах всех цеолитов, за исключением цезиевой формы, узкую полосу при 3700 см и широкие полосы вблизи 3650—3000 см . При адсорбции воды в количестве двух молекул на большую полость чувствительной к природе катиона оказалась полоса деформационных колебаний воды при 1650 см , положение которой наиболее сильно менялось при переходе от KY (1660 см ) до NaY (1643 см ). Однако при больших заполнениях эта полоса находилась при 1640—1645 см , и ее положение от природы катиона не зависело. В спектре цезиевого цеолита X в отличие от литиевой, натриевой и калиевой форм узких полос, свидетельствующих о сильном взаимодействии воды с катионами, не обнаружено в спектре этого цеолита наблюдается только широкая полоса. Вероятно, катионы цезия слабее связаны с молекулами воды и оба атома водорода в молекуле воды вступают во взаимодействие с атомами кислорода каркаса. [c.226]


    Щелочные металлы энергично взаимодействуют с водой, вытесняя из нее водород и образуя соответствующие гидроксиды. Активность взаимодействия этих металлов с водой возрастает по мере увеличения порядкового номера элемента. Так, литий реагирует с водой без плавления, иатрий — плавится, калий — самовозгорается, взаимодействие рубидия и цезия протекает еще более энергично. [c.127]

    РУБИДИЙ (Rubidium, название от характерных линий спектра, лат. rubidus — темно-красный) Rb — химический элемент I группы 5-го периода периодической системы элементов Д. И. Менделеева, п. н. 37, ат. м. 85,4678. Природный Р. состоит из двух изотопов, один из которых радиоактивен. Известны 16 искусственных радиоактивных изотонон. Р. открыт в 1861 г. Р. Бунзеном и Г. Кирхгофом спектральным анализом минеральных вод. Получают Р. вместе с цезием из карналлита и лепидолита. Самостоятельных минералов не имеет. Р.— мягкий серебристо-белый металл, химически активен, самовоспламеняется на воздухе, с водой и кислотами взаимодействует со взрывом. В соединениях Р. одновалентен. Среди солей Р. важнейшие галогениды, сульфат, карбонат и некоторые др. Р. применяют для изготовления фотоэлементов, газосветных трубок, сплавов, в которых Р. является газопоглотителем, для удаления следов воздуха из вакуумных ламп соединения Р. применяют в медицине, в аналитической химии и др. [c.216]

    В атмосфере хлора и фтора щелочные металлы самовоспламеняются. С жидким бромом литий и натрий реагируют замедленно, остальные металлы — бурно, со взрывом. С иодом взаимодействие протекает менее энергично. Литий с водой взаимодействует спокойно, для натрия наблюдается значительный тепловой эф( зект, но выделяющийся водород обычно не воспламеняется. У калия взаимодействие с водой сопровождается самовоспламенением водорода, рубидий и цезий реагируют с водой со взрывом, вытесняют водород из воды (льда) даже при —108 °С. Щелочные металлы взаимодействуют ие только с водой, но и с другими водородсодержащими соединениями, например со спиртами  [c.252]

    Взаимодействие калия с водой сопровождается самовоспламенением выделяющегося водорода, а рубия и цезия — взрывом. [c.260]

    Эта реакция протекает не для всех щелочных металлов одинаково. Выделение водорода при взаимодействии лития с водой идет спокойно без воспламенения, и сам металл при этом не плавится. Реакция натрия с водой протекает более знергично если натрию дать свободно двигаться по поверхности воды, то водород не загорается в противном случае происходит воспламенение, и пламя окрашивается в характерный для этого металла желтый цвет при этом натрий расплавляется. Взаимодействие калия с водой происходит бурно и сопровождается воспламенением металла. Рубидий и цезий реагируют с водой с сильным взрывом. Таким образом, чем больше порядковый номер атома, т. е. чем дальше от ядра отстоит валентный электрон, тем энергичнее совершается окисление металла, сопровождаемое выделением водорода. [c.233]

    При длительном взаимодействии жидкой двуокиси серы с фторидами Св, КЬ, К и Ка (но не по схеме МР 4- ЗОз = МЗОгР образуются соответствующие ф т о р-с у л ь ф и н а т ы, по строению подобные хлоратам. Теплоты образования по приведенной реакции солей цезия, рубидия и калия равны соответственно 23, 21 и 18 ккал/моль. Свободная фторсульфиновая кислота (НЗОзР) характеризуется точкой плавления —84°С, но существует лишь в смеси жидких ЗОз и Нр (полностью смешивающихся друг с другом). При нагревании или под действием воды фторсульфинаты разлагаются. [c.331]

    АЯ°298,обрмонк численно уменьшаются при переходе от лития к цезию, тепловые эффекты реакций также уменьшаются в том же направлении. Следовательно, этими данными нельзя объяснить усиление реакционной способности взаимодействия с водой при переходе от лития к цезию. [c.351]

    Соединения с кислородом. Рубидий и цезий в зависимости от условий их окисления образуют с кислородом окиси МеаО, перекиси МеаОг, триоксиды Ме4(Ог)з, надперекиси МеОг и озониды МеОз- При сгорании металлов на воздухе или в кислороде образуются МеОа, всегда содержащие примеси Ме4(Ог)з и МедОг. Все упомянутые кислородсодержащие соединения рубидия и цезия энергично взаимодействуют с парами воды и двуокисью углерода из воздуха, а надперекиси и озониды окисляют органические вещества с воспламенением или взрывом, вследствие чего требуют хранения в герметичной таре 26]. Изучены кислородные соединения рубидия и цезия недостаточно. [c.85]

    Соединения с азотом. Нитриды МвзЫ — серовато-зеленые или синие, весьма-гигроскопичные и малоустойчивые соединения, на воздухе воспламеняются. Легко взаимодействуют с хлором, серой и фосфором. При нагревании взрываются, выделяя азот [10]. Водой разлагаются — образуется МеОН и аммиак [10]. Могут быть получены в жидком азоте при электрическом разряде между электродами, изготовленными из рубидия или цезия. [c.104]

    Взаимодействие самых активных из щелочных металлов — калия, рубидия и цезия — с кислородом приводит к образованию надпероксидов общей формулы ЭО - Это также ионные соединения с сильно выраженными окислительными свойствами. Их взаимодействие с водой и кислотами протекает с выделением Н2О2 и 0 . [c.66]

    Вместе с тем, на первый взгляд многие факты противоречат отмеченной закопомерности снижения химической активности от лития к цезию. Известно, что от лития к цезию усиливается способность самовозгорания металла на воздухе (рубидий и цезий воспламеняются без нагревания). Цезий гораздо энергичнее лития взаимодействует с водой. В действительности эти наблюде-шя не противоречат тому, что рубидий и цезий менее активны по отношению к кислороду н воде, чем литий. Несмотря на то, что при окислении и взаимодействии с зодой рубидий и цезий выделяют меньше теплоты, чем 1ИТИЙ, эта энергия достаточна для быстрого плавления )тих металлов (рубидий, цезий и литий плавятся при 39, 18,5 и 179 °С). Расплавленный металл окисляется зна-1ительно быстрее и, наконец, вспыхивает. [c.409]

    Физические и химические свойства. Все щелочные металлы серебристо-белого цвета, а ничтожные примеси кислорода придают цезию золотисто-желтую окраску. Натрий и калий легче воды, а цезий почти в два раза тяжелее. Все щелочные металлы мягки, пластичны, в атмосфере сухого воздуха быстро тускнеют. При этом Ка и К образуют оксиды Э2О, а ЕЬ и Сз пероксиды Э2О2. С водой натрий реагирует бурно, калий — со взрывом, а КЬ и Се воспламеняются даже при соприкосновении со льдом. При взаимодействии с влаж- [c.307]

    Щелочные металлы. Щелочными называются металлы литий, натрий, калий, рубидий, цезий и франций, т. е. элементы главной подгруппы I группы (см. периодическую систему элементов Д. И. Менделеева). Они так названы потому, что их окислы при взаимодействии с водой образуют сильные щелочи. Р1апример, [c.292]

    Устойчивость озонидов щелочных металлов возрастает от литня к цезию. Если озонид лития в чистом виде неизвестен, а озонид рубидия мало устойчив при комнатной температуре, то озонид цезия не обнаруживает признаков разложения при 17— 19° С в течение нескольких дней. Лишь при нагревании до 70—100° С СзОз распадается с образованием окисн и выделением кислорода [102], Озониды рубидия и цезия крайне неустойчивы по отношению к влаге и двуокиси углерода. Они выделяют иод из кислых растворов иодидов. С водой бурно взаимодействуют по реакции  [c.88]

    Основные методы получения и очистки иодидов рубидия и цезия (нейтрализация карбонатов иодистоводородной кислотой, использование аннонгалогенаатов [184]) аналогичны методам получения и очистки соответствующих хлоридов и бромидов. Для синтеза иодидов рубидия и цезия могут быть также использованы хорошо известные реакции взаимодействия либо гидроокиси и галогена (в данном случае иода) при нагревании (см. раздел Бромиды рубидия и цезия ), либо карбоната (гидрокарбоната) с иодом в присутствии восстановителя (порошок карбонильного железа, перекись водорода и др.). В обоих случаях сухой остаток после выпаривания раствора прокаливают и выщелачивают водой. Рабочие растворы перед кристаллизацией иодидов можно очищать и экстракционным методом, особенно эффективным, когда требуется удалить примеси переходных элементов. В частности [185], для очистки иодидов от примесей железа, марганца, меди, кобальта и никеля (до 5-10 вес.% каждой примеси) водные растворы иодидов последовательно обрабатывают растворами дити-зона (при pH = 7,0—7,5) и о-оксихинолина (при pH = 5—6) в четыреххлористом углероде, а затем после удаления органического растворителя пропускают (для поглощения воднорастворимой части комплексообразователей и ССЦ) через хроматографическую колонку, наполненную послойно AI2O3 и канальной сажей. [c.104]


Смотреть страницы где упоминается термин Цезий взаимодействие с водой: [c.225]    [c.40]    [c.341]    [c.116]    [c.58]    [c.124]    [c.390]    [c.50]    [c.81]    [c.90]    [c.107]   
Основы общей химии Том 3 (1970) -- [ c.7 ]




ПОИСК





Смотрите так же термины и статьи:

Цезий

Цезий цезий



© 2025 chem21.info Реклама на сайте