Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Щелочные металлы взаимодействие с водой

    Взаимодействие щелочных металлов с водой [c.162]

    ВЗАИМОДЕЙСТВИЕ ЩЕЛОЧНЫХ МЕТАЛЛОВ С ВОДОЙ [c.302]

    При взаимодействии 3,45 г щелочного металла с водой образовалось 5,6 л водорода. Назовите щелочной металл. [c.127]

    Одинаково ли активно протекают реакции взаимодействия щелочных металлов с водой  [c.268]

    Объясните резкое возрастание активности взаимодействия щелочных металлов с водой при переходе от лития к цезию. Для ответа на вопрос используйте данные таблицы 5 (см. приложение), причем не только такие, как изменение энтальпии взаимодействия щелочных металлов с водой и гидратации их ионов, но и такие физические характеристики, как температура плавления и плотность. [c.159]


    Взаимодействие щелочных металлов с водой. Поочередно отрежьте небольшие кусочки щелочных металлов (Li, Na, К), обратив внимание на поверхность среза и изменение ее на воздухе. Пинцетом осторожно (в вытяжном шкафу) внесите металл в заранее наполненный кристаллизатор с водой, в которую добавлено 1—2 капли раствора фенолфталеина или лакмуса. Наблюдайте энергичное взаимодействие металлов с водой и изменение окраски раствора. Одинакова ли активность взаимодействия металлов и какие образуются продукты  [c.265]

    Объясните причину изменения характера взаимодействия щелочных металлов с водой. Изменение энтальпии в реакции с водой, а также величины некоторых свойств металлов даны в табл. 72. [c.173]

    Предполагают, что первой стадией взаимодействия щелочного металла с водой является процесс  [c.265]

    Галогены обладают способностью взаимодействовать с водой, в результате чего образуются кислоты и атомарный кислород однако эти реакции идут менее активно, чем взаимодействие щелочных металлов с водой. [c.181]

    При взаимодействии 1,11 г щелочного металла с водой образуется 0,16 г водорода. Назовите этот металл. [c.41]

    Каковы химические свойства щелочных металлов Взаимодействуют ли непосредственно щелочные металлы с азотом, кислородом, хлором, водородом, серой, водой Написать соответствующие уравнения реакций. [c.8]

    Щелочные металлы взаимодействуют с водой со взрывом, сопровождаемым разбрасыванием металла. [c.176]

    Проверим, можно ли различные реакционные способности взаимодействия щелочных металлов с водой объяснить различиями в энтальпиях растворения их кристаллических гидроокисей. Для этого определим энтальпию реакции [c.362]

    Карбиды щелочных металлов взаимодействуют с водой со взрывом и выделением углерода по реакции [c.319]

    В атмосфере хлора и фтора щелочные металлы самовоспламеняются. С жидким бромом литий и натрий реагируют замедленно, остальные металлы — бурно, со взрывом. С иодом взаимодействие протекает менее энергично. Литий с водой взаимодействует спокойно, для натрия наблюдается значительный тепловой эф( зект, но выделяющийся водород обычно не воспламеняется. У калия взаимодействие с водой сопровождается самовоспламенением водорода, рубидий и цезий реагируют с водой со взрывом, вытесняют водород из воды (льда) даже при —108 °С. Щелочные металлы взаимодействуют ие только с водой, но и с другими водородсодержащими соединениями, например со спиртами  [c.252]

    Примечание. Кристаллизатор, в котором будет демонстрироваться взаимодействие щелочных металлов с водой, следует тщательно вымыть- раствором соды. Помнить, что шарик натрия легко пристает к стеклу, если оно недостаточно хорошо вымыто. [c.174]

    Фенолфталеин в полученном растворе окрашивается в малиновый цвет. Так оправдывается ожидаемое сходство кальция с щелочными металлами он, как и щелочные металлы, взаимодействует с водой с выделением водорода. Его гидроокись, как и гидроокиси щелочных металлов, растворима в воде, т. е. представляет собой щелочь. [c.133]

    Химические реакции протекают с различной скоростью. Некоторые реакции протекают быстро (например, реакции нейтрализации, реакции взаимодействия щелочных металлов с водой и др.), некоторые медленно (например, коррозия металлов). [c.136]

    Как изменяется характер взаимодействия щелочных металлов с водой и кислородом в зависимости от размера атома Напишите формулы оксида и пероксида натрия. [c.248]

    Например, реакция взаимодействия гидрида щелочного металла с водой, как известно, протекает с образованием малораствори- [c.150]

    При взаимодействии некоторых реактивов с водой могут образовываться горючие газы. Эти реакции, как правило, экзотер-мичны, т. е. протекают с выделением большого количества тепла. В одних случаях, например, при контакте щелочных металлов с водой, реакция проходит настолько бурно, что выделившийся водород самовоспламеняется со взрывом. В других случаях, например, при взаимодействии гидрида кальция с водой, реакция протекает более спокойно и выделившегося тепла бывает недостаточно для самовоспламенения образовавшегося водорода. Однако и в последнем случае образующиеся газы представляют собой большую опасность, так как они могут воспламениться от воздействия внешнего источника зажигания. [c.73]


    Взаимодействие щелочных металлов с водой. Натрий бурно реагирует с водой. В результате реакции образуются газообразный водород и водный раствор гидроокиси натрия (едкого натра) NaOH  [c.143]

    Трудности в применении этого метода возникают при попытках изучения систем, содержащих компоненты, электродные потенциалы которых в данном электролите близки. При этом, помимо основной токообразующей реакции, возможна реакция между солью компонента А в электролите и компонентом В в сплаве, приводящая к изменению концентрации в поверхностном слое электрода и к его концентрационной поляризации. В этом случае определение термодинамической активности по уравнению (1) будет тем более ошибочным, чем меньше разница в электродных потенциалах компонентов и исходная концентрация компонента А в сплаве. Аналогичные трудности в равной степени возникают и при исследовании термодинамических свойств водных растворов смесей электролитов. Кроме того, при исследовании термодинамических свойств растворов солей щелочных металлов в воде с помощью цепей без переноса возникают осложнения, связанные с взаимодействием амальгамы щелочного металла с водой. Применение сложной техники проточного амальгамного электрода не устраняет до конца этих осложнений, в связи с чем измерения, проведенные при концентрациях растворов<0,1 н., становятся ненадежными [8]. [c.84]

    Общим свойством элементов обеих групп является способность взаимодействовать с водой, но продукты этих реакций и сам характер взаимодействия — прямо противоположны щелочные металлы разлагают воду как сильные восстановители, образуя при этом щелочи и свободный водород, а галогены — как сильные окислители, образуя кислоты свободный (атомарный) кислород  [c.182]

    Получение газообразного водорода. Взаимодействие амальгам щелочных металлов с водой сопровождается выделением газообразного водорода  [c.67]

    Водород выделяется из щелочных растворов на металлах с большим перенапряжением, например на ртути, при рН<10 вследствие непосредственного разряда ионов водорода, при рН>10 — в результате химического взаимодействия промежуточно образующихся амальгам щелочных металлов с водой. В щелочном растворе разряд молекул воды не наблюдается. Напротив, на галлие-вом электроде при рН>10 выделение водорода протекает только за счет разряда молекул воды. Электрон переходит на молекулу воды, при этом образуется адсорбированный атом водорода и гидроксил  [c.328]

    Слоистые соединения щелочных металлов с графитом сохраняют многие свойства щелочных металлов взаимодействуют с водой с выделением водорода, поглощают водород уже при 18—25 °С с образованием нестехиометрических продуктов, например состава КН сС8 (дс = 0,0-0,67), взаимодействуют с галогенами, превращаясь в смесь графита и галогенида металла. [c.513]

    Некоторые исследования позволили установить, что растворенный в воде неэлектролит влияет на гидратацию и сольватацию ионов. Результаты измерения свободной энтальпии переноса хлоридов щелочных металлов из воды в смесь метанол — вода были объяснены Войсом [386]. Согласно этой интерпретации, при переносе из воды в смесь метанол — вода сольватная оболочка иона Li+ стабилизируется больше, чем оболочка иона Na+, что является следствием более сильного электростатического влияния иона Li+ из-за его меньшего радиуса. Однако стабилизация иона Rb+ ниже, чем имеющего больший радиус иона s+, что обусловлено его неэлектростатическим влиянием на растворитель. В исследовании [38в] изучена тольватация двухзарядных ионов в смесях метаиол — вода. Установлено, что координационное число двухзарядных ионов больше, чем у однозарядных с таким же радиусом. Ион Ba + более стабилен в смесях метанол — вода, чем К+, даже если вычисление отнести к единице заряда. Во взаимодействии ионов Sf2+ и Ва + с координирующимися с ними молекулами воды < преобладают электростатические силы. Явление сольватации LiBr IB смесях вода — ацетон было исследовано в работе [38г], а гидратации H IO4 в смесях вода—диоксан в работе [38д]. [c.556]

    Такое изображение вполне правдоподобно, так как алкоголяты щелочных металлов взаимодействуют аналогичным образом с двуокисью углерода, давая смешанные карбонаты щелочного металла и алкила. Подобно алифатическим соединениям, фенилкарбонат натрия гидролизуется при соприкосновении с водой и обратимо разлагается на компоненты при низком давлении или при 80° и нормальном давлении. [c.173]

    В ряду напряжений германий располагается после водорода — между медью и серебром. Германий не взаимодействует с водой и не раство-стся в разбавленной и концентрированной соляной кислоте. Растворяется в горячей концентрированной серной кислоте с образованием Ое (804)2 и выделением ЗОз, При взаимодействии с азотной кислотой образует осадок диоксида германия хОеОа-уНгО, Хорошо растворяется в царской водке и смеси НР+НМО,, Лучшим растворителем для германия является щелочной раствор пероксида водорода. Быстро растворяют германий расплавленные едкие щелочи. При этом образуются гер-манаты щелочных металлов, гидролизующиеся водой. [c.220]

    Другой способ определения коэффициентов распределения ионов основан на обоснованности модификации уравнения Борна, В частности, этот метод был использован Коци и др. [13, 14] для получения коэффициентов распределения ионов щелочных металлов между водой, с од1 ой стороны, и ацетонитрилом и сульфоланом —с другой. Основное допущение в этом случае состоит в том, что взаимодействие между ионами щелочных металлов и упомянутыми выше апротонным 1 растворителями и водой имеет преимущественно электростатическую природу и что разница в энергии сольватации пар этих ионов в апротонных растворителях может быть отнесена к разнице в энергии в воде с соответствующей эмпирической поправкой на кристаллографические ионные радиусы в уравнении Борна. Альфенаар [c.414]

    Наряду с твердыми ионообменинками в ионообменном синтезе используются жидкие иониты — органические кислоты и основания, обычно в виде растворов в углеводородах и других низкополярных жидкостях, нерастворимых в воде. Особенно широкое применение нашли амины и четвертичные аммониевые основания (ЧАО), механизм взаимодействия которых с электролитами подобен механизму реакций на соответствующих твердых анионитах. Кислоты с аминами образуют кислые соли Ат(НХ) , соли тяжелых металлов — комплексы [(Ат) Ме] +, соли щелочных металлов взаимодействуют с солями аминов по реакциям присоединения или замещения. Для ЧАО типичны реакции истинного анионного обмена [c.69]

    Как хорошо известно, растворение щелочных металлов в воде сопровождается весьма интенсивным химическим взаимодействием их с растворителем с большим выделением тепла. Ничего подобного, однако, не происходит, если металл растворять в жидком аммиаке. Металл просто растворится в аммиаке, именно растворится потому что никакого химического взаимодействия при Этсш [c.8]

    Вода катализирует протекание многих реакций. Например, щелочные металлы взаимодействуют при комнатной температуре только в присутствии следов воды. Так как молекулы воды полярны, то они хорошо растворяют многие полярные и диссоциирующие на ионы соединения. В воде также хорошо растворимы вещества, образующие с водой водородные связи (SO2, NH3, 2H5OH и др.). Растворимость в воде малополярных веществ низкая. [c.391]


    Для проверки конца реакции проводят около крышки тигля стеклянной палочкой, смоченной крепкой НС1. В присутствии аммиака образуется белый дымок хлористого аммония. По окончании выделения аммиака нагрев усиливают до 900—1000° (т. е. до светло-красного накала) и продолжают спекание 1—2 часа, пока спекшаяся масса не отделится от стенок тигля. В это время идет разложение избытка СаСОд до СаО и HgO и образующаяся окись кальция соединяется с кремнеземом, в то время как щелочные металлы взаимодействуют с хлоридом кальция. По окончании спекания тигель охлаждают и спек переносят в фарфоровую чашку диаметром 12 см. Тигель и крышку обмывают горячей дистиллированной водой, тщательно отделяя оставшиеся частицы спека от тигля. Измельчают спек стеклянным пестиком, приливают в чашку 50 мл горячей дистиллированной воды и ставят ее на водяную баню для отстаивания осадка. Затем декантируют раствор через рыхлый фильтр и продолжают выщелачивание хлоридов, промывая остаток спека горячей дистиллированной водой и декантируя раствор из чашки через фильтр. Выщелачивание водой повторяют 2—3 раза, после чего фильтр промывают несколько раз горячей дистиллированной водой до слабой опалесценции промывных вод от AgNOg, подкисленного [c.134]

    Aul получают синтезом из элементов при 100°С или при взаимодействии АигОз с HI. Твердое вещество жел того цвета, разлагающееся при 177°С. Раство(ряется в HI и иодидах щелочных металлов, разлагается водой. [c.346]


Смотреть страницы где упоминается термин Щелочные металлы взаимодействие с водой: [c.616]    [c.207]    [c.290]    [c.103]    [c.80]    [c.650]    [c.201]    [c.308]    [c.582]    [c.9]    [c.582]   
Основы общей химии Том 3 (1970) -- [ c.7 ]




ПОИСК





Смотрите так же термины и статьи:

Металлы и вода, взаимодействие

взаимодействие с металлами



© 2025 chem21.info Реклама на сайте