Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Элементы химические в природе

    Степень окисления элемента — понятие условное, однако оно весьма полезно. Значениями степеней окисления элементов пользуются при составлении формул соединений при написании и подборе коэффициентов в уравнениях реакций для классификации соединений, характеристики их химической природы и свойств для пред- [c.82]

    Химическая природа элемента обусловливается способностью его атома терять и приобретать электроны. Эта способность может быть количественно оценена энергией ионизации атома и его сродством к, электрону. [c.31]


    РАСПРОСТРАНЕННОСТЬ ХИМИЧЕСКИХ ЭЛЕМЕНТОВ В ПРИРОДЕ [c.22]

    Подобно гидридам, фторидам и хлоридам, бромиды и иодиды в зависимости от природы элемента в положительной степени окисления могу г быть основными (галиды щелочных и щелочноземельных металлов) и кислотными (галиды неметаллических элементов). Примеры бромидов и иодидов разной химической природы и их поведение при гидролизе приведены ниже  [c.301]

    Химическая природа бинарных соединений обусловлена химической природой электроположительного элемента соединения щелочных и щелочноземельных металлов проявляют основные свойства, а [c.251]

    В зависимости от природы электроположительного элемента химическая связь между радикалом и положительно поляризованным атомом, а следовательно, и свойства рассматриваемых соединений закономерно изменяются по группам и периодам периодической системы, например  [c.252]

    Одним из приемов системного анализа процессов химической технологии является структурное (топологическое) представление объекта исследования. Излагаемые в монографии принцип декомпозиции сложной системы на ряд взаимосвязанных подсистем, блоков и элементов, эвристические алгоритмы перевода физикохимической информации на язык топологических структур, понятие операционной причинности эффектов и явлений, правила распределения знаков на связах элементов, формально-логичес-кие приемы совмещения эффектов различной физико-химической природы в локальном объеме аппарата, правила объединения отдельных блоков и элементов в единую связную топологическую структуру системы — все эти приемы и методы в целом составляют единую методологию построения математической модели химико-технологического процесса в виде так называемых диаграмм связи. [c.4]

    В изоструктурных рядах соединений типа A BV — А В — А ио мере увеличения различий в химической природе элементов увеличивается доля ионной связи, что также расширяет запрещенную зону. [c.468]

    Изучение закономерностей ядерных превращений имеет решающее начение для установления свойств ядер, природы ядерных сил и создания теории строения ядра. Изучение ядерных реакций имеет п большую практическую ценность. Это прежде всего использование ядерной энергии в практических целях, искусственное получение новых химических элементов, разнообразных радиоактивных изотопов и пр. Развитие техники ускорения частиц впервые позволило воссоздавать в лаборатории процессы, приближающиеся к происходящим и земной коре и космическом пространстве, что дает возможность представить генезис химических элементов в природе. [c.662]

    Количество водорода, накапливаемое во время хранения консервов, определяется не только толщиной оловянного покрытия, температурой, химической природой контактирующих пищевых продуктов, но чаще всего составом и структурой стальной основы. Скорость выделения водорода увеличивается при использовании сталей, подвергнутых холодной обработке (см. разд. 7.1), которая является стандартной процедурой для упрочнения стенок тары. Последующая, случайная или умышленная, низкотемпературная термообработка может приводить к увеличению или уменьшению скорости выделения водорода (см. рис. 7.1). Высокое содержание фосфора и серы делает сталь особенно чувствительной к воздействию кислот, в то время как несколько десятых процента меди в присутствии этих элементов могут способствовать уменьшению коррозии. Однако влияние меди не всегда предсказуемо, так как в любых пищевых продуктах присутствуют органические деполяризаторы и ингибиторы, часть которых может выполнять свои функции только при отсутствии в стали примесей меди. [c.240]

    Задачи системного анализа требуют четкого выделения наиболее существенных свойств элементов рассматриваемых систем для внесения структурной упорядоченности в огромное разнообразие элементов ФХС и их свойств. Внесение структуры в набор слабоструктурированных элементов, составляющих данную систему, можно осуществить, например, с помощью их классификации, а также заданием операционных причинно-следственных отношений между переменными, входящими в определяющие функциональные соотношения элементов. Классификацию элементов ФХС можно организовать по различным признакам, например по виду субстанции, преобразование которой отражает элемент, по числу связей, ассоциированных с данным элементом, по виду распределенности переменных состояния элемента (сосредоточенность или распределенность в пространстве) и т. д. Однако с точки зрения эффективности системного анализа предпочтительнее классифицировать элементы ФХС исходя из их физико-химической природы. При этом выделяются следующие группы элементов  [c.30]


    Кислород является обязательным конституционным элементом смолисто асфальтеновых веществ, тогда как другие элементы в зависимости от химической природы нефти могут присутствовать в больших или меньших количествах или же полностью отсутствовать в них. Почти постоянным спутником кислорода в смолисто-асфальтеновых веществах является сера, тогда как азот присутствует не всегда. Во всяком случае, если азот содержится в нефти, то он [c.433]

    Химическая технология изучает закономерности производственных химико-технологических процессов получения различных по своей природе и назначению продуктов. Независимо от конкретного вида производимой продукции и типа процесса ее получения, любое производство включает несколько обязательных элементов сырье, то есть объект превращения, энергию, то есть средство воздействия на объект и аппаратуру, в которой это превращение осуществляется. Особое место в химическом производстве занимает вода. Она не только служит средой, в которой протекают многие химические превращения, но широко используется в химико-технологических процессах как растворитель, теплоноситель и хладоагент, транспортное средство, а также для других разнообразных физических операций. Поэтому вполне правомочно считать воду четвертым обязательным элементом химического производства. Вопрос о составе элементов химического производства и, следовательно, химической технологии как науки их изучающей, вообще дискуссионен. Ряд авторов неоправданно расширяет их перечень, включая в элементы производства организационные мероприятия и даже такие вопросы, как перспективы развития производства, что вряд ли можно признать правомочным. [c.42]

    На устойчивость структурированной системы влияют физикохимические свойства вещества, из которого построен каркас, химическая природа окружающей его среды и наличие поверхностно-активных веществ, обусловливающих размеры и форму элементов структурного каркаса, а также энергию связей в этой системе. [c.354]

    Роль комплексообразователя может играть любой элемент периодической системы. В соответствии со своей химической природой неметаллические элементы обычно дают анионные комплексы, в которых роль лигандов играют атомы наиболее электроотрицательных элементов, например ИРРеК Кз(Р04 , KslPS I Что же касается типичных металлических элементов (щелочных и щелочноземельных ме-тал.лов), то способность к образованию комплексных соединеиий с не рганическими лигандами у них выражена слабо. Имеющиеся [c.95]

    В зависимости от химической природы элемент может либо иметь собственные минералы, либо сопут-ствонать другим элементам. Геохимики выделяют обширную группу элементов, для которых характерна равномерность распространения в земной коре. Такие элементы называют рассеянными. Распрост-ране шость в земной коре и число [c.231]

    Поскольку металлическая связь ненасыщаема и ненаправлена, мета. лы имеют координационные решетки с максимально плотной упаковкой. Как указывалось выше (см. рис. 65), для металлических простых веществ самых разнообразных по химической природе элементов наиболее типичны три типа кристаллических решеток кубическая гранецентрированная (к. ч. 12), гексагональная (к. ч. 12) и ку()ическая объемноцентрированная (к. ч. 8). Для большинства металлов характерна аллотропия. Это прежде всего связано с тем, что энергии кристаллических решеток различных металлических структур близки. Полиморфизм чаще проявляется у ii- и /-элементов (в особенности 5/), чем у S- и р-элементов. Это обусловлено энергетической близостью п — 1) d-, ns-, пр-состояний у ( -элементов и близостью 5/-, bd-, 7з-состояний у 5/-элементов. [c.233]

    В соответствии с изменением химической природы элемента закономерно изменяются и химические свойства соединений, в частности их основно-кислотная активность. Так. в случае оксидов в ряду — ВеО — В2О3 — СО2 — N,05 по мере уменьшения степени полярности связи (уменьшения отрицательного эффективного заряда атома кислорода б) ослабляются основные и нарастают кислотные свойства Ы О — сильно основный оксид, ВеО — амфотерный, а В2О3, СО и ЫзОй — кислотные. [c.250]

    К ковалентным относятся гидриды менее электроотрицательных, чем сам водород, неметаллических элементов. К ковалентным относятся, например, гидриды состава SIH4 и ВНд. По химической природе гидриды неметаллов являются кислотными соединениями. [c.276]

    Если же соединение или простое вещество содержит атомы элемента в промежуточной степени окислення, то оно может вести себя двояко оно может и приобретать, и терять электрон1>(, В первом случае оно ведет себя как окислитель, во втором - как восстановитель, Нго поведение определяется химической природой элемента-партнера, с которым оцо соприкасается, условиями и характе- ром среды, в которой протекает окислительно-восстаповительная реакция. [c.153]

    Вторая особенность структуры ФХС состоит в совмещенности, наложении множества явлений различной физико-химической природы в любой локальной точке рабочего объема технологического аппарата. ФХС нельзя отнести к системам, элементы которых разнесены в пространстве и разделены друг от друга связями материального, энергетического или информационного характера. Наложение элементов (явлений) в любом локальном элементе объема технологического аппарата, связанных между собой цепью естественных причинно-следственных отношений,— важнейшая структурная особенность физико-химических систем, выделяющая их в особый класс кибернетических систем, требующий для своего анализа специфического арсенала приемов, методов и средств. [c.31]

    Основой построения АСПМ является системный подход к анализу гетерогенно-каталитического процесса. С позиций последнего гетерогенно-каталитический процесс представляется как сложная кибернетическая система, характеризуемая большим числом элементов и связей, иерархией уровней составляющих физико-химических явлений, физически связанной цепью причинно-следственных отношений между простейшими эффектами, совмещенностью явлений различной физико-химической природы в локальном объеме аппарата и т. п. Системная точка зрения на гетерогенно-катали- [c.219]

    Сущность статистического метода заключается в нахождении коэффициентов матрицы преобразования технологического оператора путед применения методов планирования экспершхента на математической модели, отражающей физико-химическую природу процесса. Большое число входных и выходных параметров элементов ХТС делает почти невозможным определение коэффициентов матриц преобразования простым перебором переменных. Использование метода планирования эксперимента на математической модели позволяет значительно сократить расчетные процедуры и получить достаточно корректные результаты в заданном диапазоне изменений входных параметров. [c.98]

    Основой построения автоматизированной системы математического моделирования является системный подход к анализу процессов химической технологии. С позиций последнего отдельный химико-технологический процесс представляется в виде сложной кибернетической системы, характеризуемой большим числом элементов и связей, иерархией уровней элементарных физико-химических эффектов, физически связанной цепью причинно-следственных отношений между элементарными эффектдми и явлениями, совмещенностью явлений различной физико-химической природы в локальном объеме аппарата и т. п. Системная точка зрения на отдельный типовой процесс химической техпо-логии позволяет развить научно обоснованную стратегию комплексного (т. е. г. физико-химической, гидродинамической, термодинамической, кибернетической точек зрения) анализа процесса и на этой основе построения развернутой программы синтеза его математического описания (см. первую книгу). [c.4]


    Любую ФХС можно представить в виде элементов и их связей. Под элементом понимается самостоятельная и условно неделимая единица системы. Связи между элементами проявляются в материальных, энергетических и информационных потоках между ними. Ниже будет показано, что связи, ассоциируемые с потоками субстанций, допускают естественное обоснование их существования, четкую классификацию и однозначное описание с помощью переменных физико-химической природы. То же самое справедливо и в отношении элементов, которые ассоциируются с элементарными преобразователями потоков субстанций. Так, в качестве элементов будут приняты диссипаторы, накопители, преобразователи, источники, стоки, передатчики, различного типа операторы совмещения потоков субстанций в локальной точке пространства и т. д. Топологическое описание ФХС состоит в построении так называемой топологической структуры [c.19]

    Структуры слияния. Для того чтобы иметь возможность из одно- и двухсвязных элементов строить топологические сети произвольной сложности (т. е. получать связные диаграммы ФХС), необходимо ввести в рассмотрение так называемые типовые влияющие структуры (или узлы слияния субстанций). С физической точки зрения эти структуры позволяют отражать специфическую сторону ФХС — характер совмещенности в данной точке пространства явлений и процессов различной физико-химической природы гидромеханической, химической, диффузионной, электромагнитной и т. п. [c.47]

    Изотопы. Протонно-нейтронная теория позволила разрешить и еще одно противоречие, возникшее при формировании теории строения атома. Если признать, что ядра атомов элементов состоят из определенного числа нуклонов, то атомные массы всех элементов должны выражаться целыми числами. Для многих элементов это действительно так, а незначительные (отклонения от целых чисел можно объяснить недостаточной точностью измерений. Однако у некоторых элементов значения атомных масс так сильно отклонялись от целых чисел, что это уже нельзя объясннгь нелочностью измерении и другими случайными причинами. Например, атомная масса хлора равна 35,45. Установлено, что приблизительно три четверти существующих в природе атомов хлора имеют массу 35, а одна четверть — 37. Таким образом, существующие в природе элементы состоят из смеси атомов, имеющих ра и ые массы, но, очевидно, одинаковые химические свойства, т. е. существуют разновидности атомов одного элемента с разными и притом целочисленными массами, Ф. Астону удалось разделить такие смеси на составные части, которые были названы изотопами от греческих слов изос и топос , что означает одинаковый и место (здесь имеется в виду, что разные изогоны одного элемента занимают одно место в периодической системе), С точки зрения протонно-нейтронной теории изотопами являются разновидности элементов, ядра атом.ов которых содержат различн-je число нейтронов, но одинаковое число протонов. Химическая природа элемента обусловлена числом протонов в атомном ядре, ко- [c.22]

    Как известно, химический элемент — это совокупность атомов одного вида. Свойства элементов, естественно, определяются свойствами атомов п выявляются при взаимодействии их друг с другом. Наиболее характерным типом взаимодействия является такое, которое сопровождается частичной перестройкой электронных оболо- ск атомов, вызываемой переходом или оттягиванием электронов от атома к атому. У атомов одних элементов сильнее выражена снособность при затрате энергии к потере электронов, что обусловливает их восстановительные свойства у атомов других элементов более сильно выражена способность к присоединению электронов. И-она обусловливает их окислительные свойства (см. гл. II, 8). Сочетание восстановительных и окислительных свойств нейтральных атомов и определяет химическую природу элементов. [c.39]

    Как известно (гл. I, 5), химическую природу элементов определяет со ютание восстановительных и окис,тн тельных свойств не1"1-тральных атомов, количественной характеристикой которых являются значения энергии ионизации и энергии сродства к электрону, которые изменяются в зависимости от изменения заряда ядра и размеров атома с увеличением заряда ядра энергии ионизации и сродства к электрону увеличиваются, а с увеличением радиуса атома уменьшаются. В связи с этим в периодах энергия ионизации слева направо — от щелочных метал.лов к инертным элементам—увеличивается, а в группах сверху вниз уменьп1ается. 3 побочных подгруппах закономерность изменения эиергии ионизации сложнее. Энергия сродства к электрону, вообще изменяющаяся симбатно с изменением энергии ионизации, увеличивается для элементов от четвертой до седьмой главных подгрупп и резко падает ири переходе от седьмой к восьмой главной подгруппе. [c.108]

    Галиды водорода отличаются от галидов других элементов. Они сходны с галидами неметаллических элементов ио физическим свойствам, ио отличаются от них тем, что ио химической природе являются простыми кислотами, т. е. донорами протонов, а следовательно, и галид-иоиов. Эта донорная функция проявляется у них при растворении в воде, а так.тсе ири взаимодействии с галидами неметаллических элементов и с другими соединениями, н1)оявляющимн акцепторные функции. Данные о температурах и- теплотах фазовых превращений различных галоводородов нривсдены в табл. 111,3 Приложения. [c.125]

    Химические структуры асфальтенов чрезвычайно разнообразны от соединений с преобладанием алифатических элементов в молекулах до высококонденсированных ароматических систем - и от чистых углеводородов до гетероциклических соединений с различными полярными группами. Поэтому асфальтены рассматривают как класс веществ, объединенных не по химической природе, а по растворимости. Учитывая, что свойства нефтевмещающих пород и компонентный состав нефти изменяются и в пределах одной залежи, а также принимая во внимание физикохимическое воздействие пластовых вод, контактирующих с нефтью, и биохимические процессы, можно предполагать, что и физико-химические свойства асфальтенов различны. [c.9]

    И если можно понять заблуждение А. Н. Саханена [1], допускавшего чисто углеводородную природу нефтяных смол и асфальтенов, в то время когда сведения о химической природе и элемент-ном составе высокомолекулярных компонентов нефти вообще были весьма скудны, а методы разделения их на углеводородные и неуглеводородные составляющие были крайне ограниченны и недостаточно надежны, то никак нельзя оправдать аналогичные утверждения в настоящее время. Следует отметить, что Саханен правиль, но отражал представление о генетической связи смол, асфальтенов и углеводородов, выразив это схемой углеводороды— -смолы— -асфальтены. Он считал, что этот ряд переходов может осуществляться как с участием серы и кислорода, так и без их участия. [c.40]

    Подтверждается уже отмеченная выше закономерность, что в па-рафинистых нефтях наиболее богаты предельными углеводородами нормального строения фракции С20—Сз с повышением молекулярных весов возрастает доля разветвленных структур парафинов. В наиболее высокомолекулярной части парафинов в зависимости от химической природы нефти содержатся уже большие или меньшие количества гибридных форм, т. е. парафины, в прямой углеродной цепи которых один или несколько атомов водорода замещены циклическими элементами структуры (полиметиленовые или ароматические ядра). Изменение соотношения парафинов нормального и разветвленного строения в различных фракциях парафина из туймазинской нефти но мере увеличения их молекулярного веса хорошо [c.96]

    Для выяснения химической природы высокомолекулярных углеводородов нефти гибридного строения с преобладанием циклических элементов структуры, содержащих в молекуле конденсированное бпциклоароматическое (нафталиновое) ядро, был применен метод каталитического гидрирования в сравнительно мягких температурных условиях.В этом случае происходит полное гидрирование ароматических колец или же частичное гидрирование нафталинового ядра до тетралинового. При этом общее количество колец уменьшается, а число циклонарафиновых колец увеличивается. Результаты гидрирования высокомолекулярных конденсированных бициклоароматических углеводородов радченковской и ромашкинской нефтей приведены в табл. 40. [c.229]

    Самый распространенный в природе переходный металл — железо Ке, элемент побочной подгруппы VIII группы периодической системы химических элементов Д. И. Менделеева. Атомный номер его 26, относительная атомная масса 55,847. Чистое железо — блестящий серебристо-белый металл. Железо — один из наиболее распространенных элементов в природе, по содержанию в земной коре (4,65% по массе) уступает лишь кислороду, кремнию и алюминию. Оно входит в состав многих оксидных руд — гематита, или красного железняка Гв20з, магнетита Гез04 и др. [c.156]


Библиография для Элементы химические в природе: [c.22]   
Смотреть страницы где упоминается термин Элементы химические в природе: [c.252]    [c.260]    [c.325]    [c.663]    [c.34]    [c.9]    [c.110]    [c.23]    [c.160]    [c.174]    [c.175]    [c.436]    [c.487]    [c.512]   
Основы общей химии Том 3 (1970) -- [ c.253 , c.257 , c.259 ]




ПОИСК





Смотрите так же термины и статьи:

РНК химическая природа

Элемент химический



© 2025 chem21.info Реклама на сайте