Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Элементы химические газообразные

    С позиций химии нефть — сложная исключительно многокомпонентная взаиморастворимая смесь газообразных, жидких и твердых углеводородов различного химического строения с числом углеродных атомов до 100 и более с примесью гетероорганических соединений серы, азота, кислорода и некоторых металлов. По химическому составу нефти различных месторождений весьма разнообразны. Поэтому обсуждение можно вести лишь о составе, молекулярном строении и свойствах "среднестатистической" нефти. Меиее всего колеблется элементный состав нефтей 82,5 — 87 % углерода 11,5—14,5 % водорода 0,05 —0,35, редко до 0,7 % кислорода до 1,8 % азота и до 5,3, редко до 10 % серы. Кроме названных, в нефтях обнаружены в незначительных количествах очень многие элементы, в т. I. металлы (Са, Мд, Ре, А1, 51, V, N1, Ыа и др.). [c.59]


    ХИМИЧЕСКАЯ СВЯЗЬ У ЭЛЕМЕНТОВ В ГАЗООБРАЗНОМ СОСТОЯНИИ [c.200]

    Уравнение дает возможность вычислить величины AG и Ка по экспериментальным значениям Е и, наоборот, рассчитывать Е, зная термодинамические характеристики химической реакции. Примеры использования уравнения (XIX, 4) будут рассмотрены при описании электрохимических элементов различных типов. В суммарной реакции образования хлористого серебра в электрохимическом элементе участвуют только твердые вещества и газообразный хлор. Термодинамическое состояние их однозначно определяется давлением и температурой. Очень часто в суммарной реакции участвуют растворенные тела (например, в элементе Даниэля — Якоби). Изобарный потенциал реакции в таких случаях зависит не только от р и Т, но и от активностей растворенных веществ, т. е. от концентрации раствора, и величины , найденные экспериментально, можно ис-.  [c.529]

    Диффузионное насыщение поверхности металлов производят из твердой фазы (при непосредственном контакте твердых защитных элементов с поверхностью насыщаемого металла), паровой фазы (при переносе защитных элементов в виде паров), газообразной фазы (при взаимодействии газовой фазы, содержащей наносимый элемент в виде химического соединения, с поверхностью насыщаемого металла) и жидкой фазы (при взаимодействии расплава соли, содержащей наносимый элемент, с поверхностью насыщаемого металла или при непосредственном контакте с нею расплавленного наносимого металла). [c.118]

    При работе различных машин и сооружений (авиационные,, судовые и другие двигатели, трубопроводы, насосы и прочие-элементы химической и нефтеперерабатывающей промышленности, арматура предварительно напряженного железобетона и т. д.) часто встречаются случаи, когда металл подвергается одновременному воздействию длительной статической или повторно-переменной нагрузки и агрессивной среды (жидкой или-газообразной). Одновременное действие этих двух факторов-приводит к более скорому разрушению металла, чем их раз- [c.121]

    Однако это определение не отвечает на вопрос о том, как отличить элемент, когда мы встречаемся с ним. Более практическое определение элемента принадлежит Роберту Бойлю (1627-1691) Элемент-это вещество, которое при химическом превращении всегда увеличивает свой вес . Это утверждение следует понимать в том смысле, которь[й ему приписывался. Например, при ржавлении железа образующийся оксид железа имеет больший вес, чем исходное железо. Однако вес железа и соединяющегося с ним кислорода точно равен весу образующегося оксида железа, И наоборот, когда мы нагреваем красный порошок оксида ртути, происходит выделение газообразного кислорода, а остающаяся серебристая жидкая ртуть имеет меньший вес, чем исходный красный порошок. Но если это разложение проводится в закрытой реторте, можно убедиться, что в процессе реакции не происходит изменения общего веса всех веществ, (Лишь спустя 100 лет после Бойля Лавуазье провел опыты с точным взвешиванием, продемонстрировав, что в подобных реакциях выполняется закон сохранения массы,) [c.270]

    Химические элементы в свободном состоянии представлены практически полностью для различных форм (кроме газообразных ионов, для которых приведены только примеры некоторых однозарядных ионов). [c.313]

    Исследования Дюма н Митчерлиха о плотности серы, фосфора и мышьяка в некоторой степени подорвали доверие Берцелиуса к объемному методу, как методу для непосредственного определения атомного веса по плотности элементов в газообразном состоянии. Однако от своей системы он не отказывается, ибо ее подтверждали все соображения как чисто химического, так и физико-химического порядка (закон Дго-лона и Пти, закон изоморфизма). Сам Берцелиус не считал, что его система основана только на объемном методе, и всегда подчеркивал, что он против одностороннего, однозначного подхода к вопросу об атомных весах. Он это особо подчеркнул после неудачных попыток Дюма использовать объемный метод для непосредственного определения атомных весов ...не су шествует никакого абсолютного метода для определения атомного веса надо всё принимать во внимание... [56, стр. 63]. [c.146]


    Молярная масса химического соединения равна сумме молярных масс составляющих его элементов. Молярная масса газообразного кислорода (О2) равна удвоенной атомной массе, или 32,00 г. [c.140]

    Существует ряд признаков, по которым классифицируют топливные элементы по рабочей температуре электролита — на низкотемпературные (ниже 100°С), среднетемпературные (100—500 °С) и высокотемпературные (выше 500 °С) по химическим свойствам электролита — на щелочные и кислотные по физическому состоянию электролита — на элементы с жидким, твердым и матричным электролитом по физическому состоянию активных веществ — на элементы с газообразными, жидкими и твердыми реагентами. Кроме того, топливные элементы различают по виду активного вещест- [c.41]

    Извлечение гелия из природных газов основано на двух его свойствах гелий имеет самую низкую температуру кипения (—269° С) среди других химических элементов и практически нерастворим в жидких углеводородах. Гелий выделяют из газов методами низкотемпературной конденсации и ректификации. Процесс охлаждения ведут так, чтобы все остальные компоненты природного газа, за исключением некоторой доли азота, перешли в жидкое состояние. Природный газ сжимают компрессором до давления 150 ат, очищают от двуокиси углерода и сероводорода, охлаждают и подают в сепаратор высокого давления. Выделившийся при этом нерастворимый в жидкой фазе газообразный гелий направляется в регенератор холода. Отдав свой холод сжатому газу, он отводится в емкость [c.172]

    Простые и сложные вещества. Вещества подразделяются на простые и сложные. Простыми называются вещества, которые невозможно разложить обычными средствами на составные части — элементы, например газообразные вещества — кислород, водород, азот жидкие вещества — ртуть, бром твердые вещества — железо, сера, хром, медь, олово, графит. Путем химического соединения простых веществ образуются сложные вещества, или химические соединения, например, вода представляет собой химическое соединение водорода и кислорода сернистое железо — химическое сое- [c.5]

    Эксперименты по определению скорости вторичного зародышеобразования проводились авторами на системе хлористый аммоний— вода в трубчатой ячейке. Схема установки для ведения процесса десублимации хлорида аммония представлена на рис. 3.21. Основным элементом установки является стеклянная ячейка 1, сделанная в виде трубы длиной 70 см и диаметром 7 см. По высоте стеклянной ячейки расположен ряд пробоотборников (через 7,5 см). В верхнюю часть стеклянной трубы подаются газообразные реагенты (через два отвода подавались газообразные аммиак и хлористый водород). Химическая реакция, протекающая по [c.317]

    Таким образом, если известна константа Шоттки Ks, то достаточно знать одну из двух констант распределения элементов между газообразной и твердой фазами Ка или Кс- К сожалению, экспериментальное определение их довольно сложно, поскольку отклонения от стехиометрического состава обычно слишком малы, чтобы их можно было с достаточной точностью определить химическим анализом, а корреляцию между физическими параметрами и концентрацией соответствующих дефектов не всегда можно установить. К этому нужно добавить, что образующиеся дефекты могут принимать участие в различных интеркристаллических реакциях и [c.93]

    Когда химическая система выполняет работу над своим окружением в ходе обратимого процесса, уменьшение свободной энергии системы в точности совпадает с той частью работы, которая не является работой типа PV. Например, работа, вьшолняемая гальваническим элементом, является мерой уменьшения свободной энергии этого элемента. И наоборот, если к электродам электролитического элемента, подобного описанному в разд. 1-7, приложено напряжение, то электрическая работа, выполняемая над электролитическим элементом (и измеряемая методами, которые будут рассматриваться в гл. 19), равна приросту свободной энергии химических вешеств внутри него. Когда при пропускании электрического тока через воду происходит ее электролитическая диссоциация, использованная для этого электрическая работа расходуется на увеличение свободной энергии газообразных водорода и кислорода по сравнению со свободной энергией жидкой воды  [c.71]

    Все эти газообразные, жидкие и твердые углеводороды в зависимости от строения молекул подразделяются на три основных класса — парафиновые, нафтеновые и ароматические. Значительную часть нефти составляют углеводороды смешанного строения, содержащие структурные элементы всех трех упомянутых классов. Строение молекул углеводородов определяет их химические и физические свойства. [c.233]

    Первой стадией взаимодействия паровой и газообразной фаз с поверхностью насыщаемого металла является их хемосорбция. Химическая реакция взаимодействия газовой и жидкой фаз, содержащих наносимый элемент Ме в виде химического соединения, с поверхностью насыщаемого металла Ме протекает по типу (для случая хлоридов) [c.118]

    Межмолекулярная связь действует между молекулами газообразных и жидких тел. Так как межмолекулярная связь в большинстве случаев слабее обычной химической связи, молекулярные кристаллы плавятся при низких температурах и имеют высокую летучесть. Температуры плавления и кипения повышаются по мере перехода к более тяжелым элементам (табл. 11). [c.38]

    Все, что состоит из частиц одного или нескольких химических элементов, находится в твердом, жидком или газообразном состоянии, имеет массу и объем. [c.12]

    Столь простой эмпирический закон теоретически очень просто объяснить, если предположить, что равные объемы газов содержат (при одинаковых давлений и температуре) равное количество реагирующих частиц-молекул. Это утверждение было выдвинуто Авогадро в 1811 г. как гипотеза (известно сейчас к к закон Авогадро). Авогадро считал, что частицы, участвующие в рассмотренных выше реакциях газообразных элементов, могут включать несколько (группу) атомов, т. е. представляют собой молекулы. Гипотеза Авогадро имела выдающееся значение для дальнейшего развития химической науки, в частности, потому, что на ее основе стало возможным составлять уравнения химических реакций. [c.13]

    Процессы, происходящие в буровой промывочной жидкости, основаны на определенных физических и химических взаимодействиях всех элементов и соединений, входящих в состав ее жидкой, твердой и газообразной фаз. Основное значение при этом имеют процессы, протекающие вблизи поверхностей их раздела. [c.7]

    Фтор, занимая верхний правый угол таблицы периодической системы элементов Д. И. Менделеева, обладает наивысшей электроотрицательностью. В связи с этим при связывании с любым химическим элементом, в том числе и с углеродом, фтор при определенных температурах способен к образованию только фторидов, так как возникающая общая пара электронов притягивается к фтору. В то время как энергия ковалентной связи фтора с углеродом равна 536 кДж/моль, энергия связи между атомами фтора примерно 157 кДж/моль. Вследствие этого при нагревании газообразный фтор легко диссоциирует при относительно низких температурах с переходом в атомарное состояние [c.378]

    Основными химическими элементами, составляющими нефть, являются углерод (С) и водород (Н), содержащиеся в различных нефтях в количествах (% мае.) 82-87 и 11-15 соответственно. Оставшуюся долю составляют сера (8), азот (Ы), кислород (О) и металлы (ванадий, никель, железо, кальций, натрий, калий, медь и др.), находящиеся в нефтях в виде сернистых, азотистых, кислородсодержащих и металлоорганических соединений. Таким образом, по своему составу нефть представляет собой очень сложную смесь органических веществ, преимущественно жидких, в которой растворены (или находятся в коллоидном состоянии) твердые органические соединения и сопутствующие нефти газообразные углеводороды (попутный газ). [c.14]


    Один из тот же элемент может образовывать несколько простых веществ. Так, элемент кислород при нормальных условиях образует два газооб разных вещества—кислород и озон, сильно различающиеся ло своим физическим и химическим свойствам. Причина различия заключается в неодинаковом числе и неодинаковом способе соединения атомов в молекулах этих веществ. Обычный газообразный кислород состоит из двухатомных молекул, тогда как молекулы озона — трехатомные, угловые. Эти же виды молекул присутствуют в жидком и твердом кислороде и озоне соответственно и, таким образом, характерны для данных простых веществ. В других случаях, например в модификациях серы, различные способы соединения атомов могут и, не сопровождаться столь сильными отличиями в свойствах. [c.345]

    Топливные элементы и электрохимические эиергоустановки. Если окислитель и восстановитель хранятся вне элемента и в процессе работы подаются к электродам, которые не расходуются, то элемент может работать длительное время. Такие элементы называют топливными. В топливных элементах химическая энергия восстановителя (топлива) и окислителя, непрерывно и раздельно подаваемых к электродам, непосредственно превращается в электрическую энергию. Удельная энергия топливных элементов зачительно выше гальванических. В топливных элементах используют жидкие или газообразные восстановители (водород, гидразин, метанол,углеводороды) и окислители (кислород и пероксид водорода). [c.411]

    Разделение изотопической смеси химически чистых элементов наиболее эффективно проводится в газовой фазе методом Клузиуса. Элемент в газообразном состоянии или в виде одного нз своих летучих соединений пропускается через ряд стеклянных трубок, стенки которых поддерживаются ири низкой температуре, а по оси каждой из них протянута нагреваемая током проволока. Объединенное действие конвекции и диффузии в конце концов приводит к разделению изотопов в этой весьма простой установке, известной под названием колонки Клузиуса. Однако для водорода, который обычно содержит одну часть изотопа Н на 6000 частей изотопа Н , используется метод электролиза подкисленной воды с применением никелевых электродов и тока высокой плотности. Обогащенный дейтерием водяной пар конденсируют и снова подвергают электролизу до тех пор, пока не получится тяжелая вода с постоянной плотностью. Затем ее разлагают на поверхности раскаленного рольфрама и, наконец, очищают медленной диффузией через палладий. [c.214]

    Характер окислительно-восстановительных состояний химических элементов тесно связан с электронной конфигурацией> их атомов. В табл. 4 представлено строение электронных оболочек нейтральных атомов элементов в газообразном состоянии от актиния до лауренсия включительно, полученное частично из спектроскопических данных, а также электронных структур в металлическом состоянии. [c.14]

    Общая характеристика подгруппы. В эту подгруппу входят азот, фосфор, мышьяк, сурьма и висмут. Они характеризуются одинаковой структурой наружного энергетического уровня электронных оболочек атомов пз пр , чем объясняется сходство многих химических их свойств. Они образуют оксиды Э2О3 и ЭгОд, в которых все элементы проявляют валентность, равную трем или пяти. С водородом эти элементы образуют газообразные соединения типа ЭНз. [c.351]

    Химия имеет дело с атомами и молекулами. Атом (греч.— неделимый) — мельчайшая частица химического элемента, химический индивидуум (Менделеев), дальнейшее деление которого приводит к резкому изменению свойств, к потере химической индивидуальности. Сочетание однотипных атомов образует простое вещество, в то время как сложное вещество возникает в результате сочетания разных атомов. Молекула — мельчайшая частица простого или сложного вещества ( физический индивидуум ), способная к самостоятельному существованию при определенных физических условиях (в газообразном состоянии или в разв>еденных растворах). [c.34]

    При рассмотрении вопроса о валентностях элементов и составлении уравнений простых химических реакций мы более или менее произвольно приписали обычным элементам и радикалам положительные и отрицательные знаки валентности. Положительная валентность, очевидно, означает потерю электронов и, возможно, образование иона. Магний, например, отдает два электрона и образует ион с двумя положительными зарядами. Поэтому говорят, что его валентность равна +2, но так как потеря электронов — это и есть окисление, то вместо термина валентность часто применяют термин степень окисления . Следовательно, можно смело сказать, что степень окисления магния равна +2 в совершенно аналогичном смысле применяют и термин окислительное состояние . Валентность или степень окисления несвязанного элемента или газообразного элемента, обра- [c.101]

    Предыдущие главы этой книги были посвящены главным образом ознакомлению с такими законами химии, как правила образования химической связи, законы термодинамики, принцип действия электрохимических элементов и т. п. В ходе объяснения этих законов мы описывали химические и физические свойства многих веществ. Таким путем вы познакомились со многими химическими фактами. Однако пока что вам должно быть еще не просто предсказывать химические и физические свойства веществ, основываясь на химических законах и тех отрывочных данных, которые вы узнали. Допустим, например, что в ващих руках оказался закрытый сосуд с надписью фтор . Что вы можете сказать о свойствах вещества, находящегося внутри этого сосуда Газообразное это вещество или мелкокристаллический порошок Обладает оно высокой реакционной способностью или же его можно спокойно открывать на воздухе С веществами какого типа оно скорее всего должно реагировать Вы можете ответить на многие вопросы, основываясь на законах, уже обсуждавшихся в этой книге. Например, можно вспомнить, что, согласно изложенному в гл. 7, ч. 1, фтор существует в виде молекул р2 более того, вы можете заключить, что р2 является газообразным веществом, поскольку его молекулы неполярны и между ними действуют слабые силы притяжения. Если вспомнить, что фтор наиболее электроотрицательный элемент, то следует заключить, что он представляет собой очень сильный окислитель, а следовательно, обладает очень высокой реакционной способностью. Короче говоря, вы уже можете предсказать многие свойства химических веществ. [c.281]

    Закон кратных отношений состоит в том, что при образован1ш какого-либо простого или с.1южного вещества элементы в молекулу последнего входят в количествах, равных или кратных их атомному весу. Если же отнести этот закон к объемам, вступающих в реакцик вендеств, то он примет следующую формулировку если вещества вступают в химическую реакцию в газообразном состоянии, то они при одинаковых условиях (Р и /) могут соединяться только в объемах, которые относятся между собой, как целые числа. [c.30]

    Аппараты колонного типа являются основными узлами систем разделения жидких и газообразных продуктов в нефтехимической промышленности. Способ разделения смеси определяется ее характером. В зависимости от этого выбираются принципы разделения и конструкции внутренних (контактных) элементов разделительных аппаратов (колонн). По принципу разделения колонны можно классифицировать на ректификационные, экстракционные, выпарные, сорбционные и прочие разделительные колонны [24—28]. Последние могут работать, сочетая одновременно несколько способов разделения, в том числе основанных не только на физическом, но и химическом взаимодействии компонентов смеси, как, например, в процессах клатрации, экстрактивной и азеотропной ректификации и др. [c.142]

    Производство высокоэффективных адсорбентов для очистки жидких и газообразных продуктов, легких и высокоэффективных теплоизоляционных материалов, коррозионностойких элементов оборудования для химической отрасли, большого числа товаров бытового потребления - это далеко не полный перечень использования углеродных волокон из нефтяного сырья. Возобновление интереса к созданию производства такого типа углеродных волокон позволит не потерять наработанный опыт и затраченные материальнь/е средства. [c.19]

    Химический элемент — общее (широкое). Простое веще-сгво (уголь, графит, озон, металл и т. д.) частное. Таково соотношение объемов этих понятий. Следует также отличать понятия "простого вещества" и "простого тела". Под телом общепринято понимать твердые химические соединения. Тело может быть и простым веществом (медная болванка, например) и сложным (N33804 — соль). Простое вещество может существовать во всех трех агрегатных состояниях газообразном, жидком и твердом (тело). Простое тело — разновидность простого вещества. Второе понятие шире. Но чтобы понять это, науке потребовались столетия. Учение Ломоносова является концептуальным этапом в развитии атомистических представлений о строении материи. [c.25]


Смотреть страницы где упоминается термин Элементы химические газообразные: [c.67]    [c.161]    [c.304]    [c.127]    [c.160]    [c.455]    [c.208]    [c.112]    [c.56]    [c.112]    [c.196]    [c.132]    [c.14]   
Основы общей химии Том 3 (1970) -- [ c.253 ]




ПОИСК





Смотрите так же термины и статьи:

Элемент химический



© 2025 chem21.info Реклама на сайте