Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Элементы химические превращение

Рис. 7.2. Условные обозначения типовых технологических операторов а —элемент химического превращения б—элемент массообмгна а —смеситель потоков г—распределитель потоков д—элемент теплообмена е — элемонт сжатия илл расшпрения ЛС—элемент изменения фазового состояния вещества. Рис. 7.2. Условные обозначения типовых технологических операторов а —элемент химического превращения б—элемент массообмгна а —смеситель потоков г—распределитель потоков д—элемент теплообмена е — элемонт сжатия илл расшпрения ЛС—элемент изменения фазового состояния вещества.

    Значительно упрощая проблему, делим весь технологический процесс на единичные элементы 1) единичные типовые процессы химической технологии и 2) единичные процессы с участием химических превращений. Во многих случаях разграничение между такими единичными процессами чисто условное. Часто единичные элементы процесса можно отнести к обеим указанным группам. Критерием классификации можно считать цель, для достижения которой предназначен единичный элемент. Если элемент процесса включает в себя химическое превращение и целью его является производство определенного продукта, то он относится к единичным химическим процессам, как, например, процесс абсорбции двуокиси углерода аммиачным раствором хлористого натрия в производстве соды по методу Сольвея. Абсорбцию же, проводимую с целью очищения отходящих газов от незначительных количеств вредных веществ, следует отнести к единичным типовым процессам химической технологии. [c.343]

    Однако это определение не отвечает на вопрос о том, как отличить элемент, когда мы встречаемся с ним. Более практическое определение элемента принадлежит Роберту Бойлю (1627-1691) Элемент-это вещество, которое при химическом превращении всегда увеличивает свой вес . Это утверждение следует понимать в том смысле, которь[й ему приписывался. Например, при ржавлении железа образующийся оксид железа имеет больший вес, чем исходное железо. Однако вес железа и соединяющегося с ним кислорода точно равен весу образующегося оксида железа, И наоборот, когда мы нагреваем красный порошок оксида ртути, происходит выделение газообразного кислорода, а остающаяся серебристая жидкая ртуть имеет меньший вес, чем исходный красный порошок. Но если это разложение проводится в закрытой реторте, можно убедиться, что в процессе реакции не происходит изменения общего веса всех веществ, (Лишь спустя 100 лет после Бойля Лавуазье провел опыты с точным взвешиванием, продемонстрировав, что в подобных реакциях выполняется закон сохранения массы,) [c.270]

    Хлор — типичный неметаллический элемент. Следовательно, для него наиболее характерна тенденция при химических превращениях образовывать простые и сложные анионы. [c.286]

    Химическое превращение, химическая реакция есть главный предмет химии. Изучение различных свойств элементов и молекул дает в сущности для химии вспомогательный материал, облегчающий главную задачу, задачу рационального управления химическим превращением... [c.158]

    Первым шагом в научном решении проблемы превращения элементов было открытие А. Беккерелем в 1896 г. радиоактивности урана. Два года спустя Мария Склодовская-Кюри и Пьер Кюри обнаружили радиоактивность у тория и открыли два новых радиоактивных элемента — полоний и радий. Объяснение радиоактивности как следствия расщепления ядер (Резерфорд, Содди, 1903) показало, что химические элементы не являются вечными и неизменными, а могут превращаться друг в друга. С этого момента получила твердые научные основы и задача искусственного превращения элементов. Закономерности превращения ядер химических элементов изучает ядерная химия. [c.657]

    В настоящее время разработка топливных элементов находится еще в начальной стадии. Принципиально доказана возможность использования некоторых видов топлива в топливных элементах и превращения их химической энергии в электрическую с практическим к. п. д. до 75—90% (в тепловых мащинах к. п. д. не превышает 40%). Однако вследствие разных технологических и эксплуатационных трудностей (недостаточная длительность работы, повышенные требования к чистоте топлива и др.) экономические преимущества топливных элементов, даже с учетом более высокого к.п.д. использования топлива, пока еще не ясны поэтому вопрос о возможности использования их для производства электроэнергии вместо тепловых электростанций требует еще дальнейшего изучения. Несомненно, однако, что для более ограниченных целей топливные элементы в ближайшем будущем найдут широкое применение. [c.604]


    Понятие моль позволяет химикам рассчитывать массы элементов и соединений, участвующих в химических превращениях. Однако не так просто организовать мониторинг и оценить количества природных ресурсов, используемых при производстве всевозможной продукции. [c.143]

    Пропускание одного и того же электрического заряда через электролитическую ячейку всегда приводит к количественно одинаковому химическому превращению в данной реакции. Масса элемента, выделяемого на электроде, пропорциональна заряду (количеству электричества), пропущенному через электролитическую ячейку. [c.43]

    Если электрический ток пропускают через расплав или раствор соли, прохождение тока осуществляется ионами, мигрирующими в противоположных направлениях. На катоде, где электроны поступают в соляную среду, катионы металла восстанавливаются до свободного металла. На аноде, где электроны перетекают из соли обратно во внешнюю цепь, анионы окисляются с образованием свободных неметаллических элементов. Этот процесс называется электролизом. Фарадей установил строгое соотношение между величиной заряда, прошедшего через прибор для электролиза, и количественной мерой происходящего при этом химического превращения 96485 Кл заряда должны приводить к выделению 1 моля каждого продукта, в котором превращение затрагивает 1 электрон на ион. Величина, равная 96485 Кл, представляет собой просто заряд 1 моля электронов и называется фарадеем (1Г) заряда. [c.54]

    Структурная схема, входные и выходные параметры, а также внешние связи второго элемента (проточные зоны) приведены на рис. 5.4. Ко входным параметрам следует также отнести и вектор наблюдаемой скорости химических превращений Wg l в элементе слоя. Нестационарные процессы в проточной зоне определяются шестью факторами 1) линейной скоростью реакционной смеси  [c.223]

    Основные уравнения. В отличие от реакций в замкнутом объеме при осуществлении реакций в потоке (с неизменным режимом течения) концентрации реагентов повсюду остаются постоянными во времени, но меняются в пространстве. Для вывода кинетического уравнения реакции в потоке рассмотрим поток реагирующей смеси через бесконечно малый элемент объема реактора длиной йХ (где X — координата, отсчитываемая по ходу потока) . Благодаря химическим превращениям, протекающим в выделенном элементе объема, количество N1 -го вещества, проходящее через единицу поперечного сечения реактора в единицу времени, изменяется на величину = г,. йХ, откуда  [c.74]

    Вследствие относительно большого размера частиц катализатора, значительное влияние на скорость химических превращений в зернистом слое оказывают процессы переноса вещества и тепла внутри твердых частиц. Процессы на изолированном зерне катализатора изучались в главе III знание макроскопической скорости реакции на отдельном зерне в зависимости от концентраций реагентов и температуры потока в данной точке слоя — необходимый элемент математического описания процессов в зернистом слое. Другим [c.213]

    В качестве критериев эффективности ХТС используют как экономические критерии в виде различных технико-экономических показателей (средняя величина прибыли, приведенный доход, себестоимость, приведенные затраты и т. д.), так и технологические критерии (производительность, мощность, качество выпускаемой продукции расходные нормы сырья и энергии для ХТС в целом для отдельных элементов ХТС или ХТП — к. п. д. ХТП, которые представляют собой, например, для процессов химического превращения — степени превращения химических компонентов, а для процессов межфазной массопередачи — степени межфазного перехода, или коэффициенты извлечения термодинамический или эксергетический к. п. д. элементов и т. д.) [1, 2, 4, 49]. [c.34]

    Химические превращения в элементах печной системы протекают при постоянной температуре (изотермический температурный режим) илн в интервале температур (политермический режим). Более или менее полное приближение к изотермичности слоя материала может быть достигнуто при непрерывной компенсации теплового эффекта реакции, малых тепловых эффектах реакции и высокой теплопроводности реагентов, перемешивании теплоносителя и исходных материалов. В печах кипящего слоя температурный режим близок к изотермическому. [c.115]

    Тепловой баланс печного процесса бывает теоретический и практический. Теоретический тепловой баланс составляется по данным материального баланса печного процесса с учетом тепловых эффектов физических и химических превращений элементов печной системы или расходных коэффициентов при проектировании новых печей. Практический тепловой баланс рассчитывается при исследовании действующих печей по фактическим данным их промышленной эксплуатации. [c.139]

    При анализе уровня общности модулей необходимо учитывать как общность модулей по отношению к определенному типу элементов ХТС (аппарату), так и общность по отношению к веществам (материалам), подвергающимся физико-химическим превращениям в элементе данного тииа. Можно выделить четыре уровня иерархии общности модулей по отношению к каждому из указанных аспектов узко специализированные модули специализированные модули широко специализированные модули обилие модули. В табл. II-4 приведены примеры уровней общности для модулей технологических операторов межфазного массообмена и нагрева—охлаждения. [c.60]

    Необходимо особо подчеркнуть, что уровень общности модуля зависит от типа элементов или технологических операторов ХТС. Например, модули химического превращения обычно специализируются по отношению к кинетическим характеристикам, к гидродинамической структуре потоков и к режиму теплообмена в реакторе. Модули типа смешение и типа расширение — сжатие (отображающие работу насосов) легко сделать широко специализированными илп общими для моделирования различных ХТС. [c.62]

    В 1845 г. Адольф Вильгельм Герман Кольбе (1818—1884), ученик Вёлера, успешно синтезировал уксусную кислоту, считавшуюся в его время несомненно органическим веществом. Более того, он синтезировал ее таким методом, который позволил проследить всю цепь химических превращений — от исходных элементов (углерода, водорода и кислорода) до конечного продукта — уксусной кислоты. Именно такой синтез из элементов, или полный синтез, и был необходим. Если синтез мочевины Вёлера породил сомнения относительно существования жизненной силы , то синтез уксусной кислоты Кольбе позволил решить этот вопрос. [c.71]

    Покажем применение метода для определения оптимального состава поэлементного резерва ХТС, состоящей из двух технологических операторов 1 — оператора теплообмена и 2 — оператора химического превращения (рис. 8.1). Повышение надежности данной ХТС обеспечивается поэлементным нагруженным резервированием без восстановления отказавших элементов. Заданы вероятности безотказной работы элементов в интервале времени [0 Р,(/) = = 0,7 Р2 1)=0,5 и капитальные затраты на элементы К = уел. ед. и Кг = = 3 уел. ед.  [c.211]

    А и В — исходное сырье Р () — вероятность безотказной работы -го элемента ХТС (1=1, 2, 3) в интервале времени [О, 1,3 — операторы химического превращения 2 — оператор теплообмена [c.218]

    При проектировании химического производства исходная задача последовательно делится на некоторое число функциональных подсистем до уровня элементов или аппаратов. Например, при выполнении стадии технологического проектирования все производство сначала делится на отделения (подготовки сырья, химическое превращение, выделение продуктов), затем на совокупности однотипных аппаратов (реактора, ректификационных колонн, теплообменных систем и т. д.). Полученная в результате декомпозиции система представляет собой ориентированный граф, каждой вершине которого сопоставлен аппарат (группа аппаратов), а дуги характеризуют информационные потоки. Следовательно, этим графом можно отобразить задание в проект, т. е. собственно проектирование. Эty иерархическую структуру можно интерпретировать как сетевой график проектирования (изготовления проекта). [c.27]


    Итак, математическое описание комплексов с разделяющими агентами и совмещенных процессов помимо традиционных элементов для массообменных процессов должно содержать соответственно алгоритмы выбора разделяющих агентов и расчета стадии химического превращения. [c.92]

    Приведем конкретный пример связной диаграммы процессов в полупроницаемой мембране для простейшего случая системы с компонентами А ж В, участвующими в реакции А В. Соответствующая диаграмма связи приведена на рис. 2.7, Если бы в реакции участвовало большее число компонентов, то каждому из них соответствовала бы своя (К—С)-цепочка диффузии, причем в каждой 1-й ячейке (К — С)-звено было бы связано через ТР-преобразователи сдвухсвязным диссипативным К-элементом химического превращения. По сути процесса в построенной диаграмме важно отразить тот факт, что молекулы-носители не проникают через границы мембраны, т. е. диаграммная сеть должна начинаться и заканчиваться К-элементами диффузионных сопротивлений, причем крайнее левое диффузионное сопротивление (на участке 1 ) и крайнее правое диффузионное сопротивление (па участке ) должны быть бесконечно велики (практически на несколько порядков выше, чем внутренние сопротивления). Для этого в связной диаграмме полное сопротивление диффузии /с-го компонента в г-й ячейке [c.133]

    ХТС может состоять, например, из нескольких последовательно расположенных агрегатов, и соответственно схема будет включать несколько операторов химического превращения. Непревра-щенное сырье и промежуточные продукты возвращаются в каждый из этих элементов после разделения продуктов реакции. Например, на рис. 59 имеется два элемента химического превращения (/ и 2). В первом из них протекает реакция превращения вещества А1 в вещества Аг и Аз, т. е. А1.— Аг—>Аз. Во втором Аг—При этом вещества Аз и А4 являются целевыми, Аг промежуточным продуктом. После первого элемента химического превращения реакционная смесь разделяется Аз выводится из системы как целевой продукт, Аг идет на дальнейшую переработку во второй элемент химического превращения, а А возвращается в первый элемент химического превращения. Образующаяся во втором элементе реакционная смесь разделяется А4 выводится как целевой продукт, Аг рециркулирует во второй элемент, а содержащееся в смеси вещество А1 (если оно не полностью выведе- [c.129]

    Типовые технологические операторы — это элементы, химического превращения, теплообмена, массообмена, смесители и делители потоков, устройства для повышепия и понижения давления, изменения агрегатного состояния вещества. Условные изобрал е-ння этих элементов приведены на рис. 7.2. [c.152]

    Среди ученых, занимавшихся изучением результатов такой бомбардировки, были Ган и Мейтнер, открывшие двадцать лет назад протактиний (см. гл. 13). Эти исследователи обработали барием бомбардированный уран, в результате в осадок выпала какая-то фракция сильно радиоактивного вещества. Эта реакция заставила Гана и Мейтнер усомниться в том, что сдним из продуктов бомбардировки был радий элемент по своим химическим свойствам очень был похож на барий, и можно было ожидать, что радий сопровождает барий в любых химических превращениях. И тем не менее из этих барийсодержащих фракций получить радий не удалось. [c.176]

    Электрохимическая система, производящая электрическую энергию за счет протекающих в ней химических превращений, называется химическим источником тока или гальваническим элементом (рис, 2, б). Здесь электрод, пос1>1лающий электроны во внешнюю цепь, называется отрицательным электродом или отрицательным полюсом элемента. Электрод, принимающий электроны из внешней цепи, называется положительным электродом или положительным полюсом элемента. [c.13]

    Прохождение электрического тока через электрохимическую систему связано ке только с соответствующими химическими превращениями, но и с изменением ее электрических характеристик, прежде всего э.д.с. и электродных потенциалов, ио сравиенпю с их исходными значениями в отсутствие тока. При этом если электрохимическая система является электролизером (электролитической ванной), то напряжение на ней при данной силе тока будет больше обратимой э.д.с. той же системы E (j)>E, и наоборот, если электрохимическая система генерирует ток, т. е. является химическим источником тока — гальваническим элементом или аккумулятором, то его внешнее напряжение будет меньше, чем э.д.с. Еа 1)<Е. [c.287]

    Радиоактивностью называется снособность атомов неустойчивых и,зотопов некоторых элементов к самопроизвольному лучеиспусканию. Последнее обладает рядом общих свойств, которые служат для его качественного и количественного определения. Важн( й иими свойствами радиоактивного излучения являются а) действие его на фотографическую эмульсию, вызывающее ее почернение б) ионизация газов, т. е. возбуждение в них электро-нрово.цности в) высокий тепловой эффект процесса, отличающий его от обычных химических превращений г) возбуждение свечения некоторых веществ, напрнмер 2п.Я д) значительная проникающая способность и др. [c.61]

    Отметим, что даже в таком упрощенном примере системы неправильно было бы утверждать, что совмещенные химическая реакция и ректификация находятся, например, в связи друг с другом как только последовательные или только параллельные процессы. Здесь имеют место элементы и той, и другой связи во времени. Последовательная связь прослеживается хотя бы в том, что до начала ректификации тройной смеси АВС необходимо предварительное образование вещества С за счет химической реакции. Параллельная связь видна из того факта, что при поступлении смеси реагентов А и В в колонну нач1тается как химическое превращение их, так и ректификация еще бинарной смеси АВ. [c.190]

    Различают реакции с изменением и без изменения степеней окисления элементов. Понятно, что такое подразделение условно и основано на формальном признаке — возможности количественного определения условной величины — степени (состояния) окисления элемента. Неизменность степени окисления элементов при химических превращениях вовсе не означает, что не происходит перестройки электронных структур взаимодействующих атомов, ионов и молекул. Конечно, и в этом случае протекание реакции обязательно связано с большим или м(. ньшим изменением характера межатомных, межиошых и меж-молекулярных связей, а следовательно, и эффективных зарядов атомог . [c.207]

    Расчет реакторов с сегрегированным потоком. В реакторах для проведения процессов в гетерогеннь1х системах часто можно различить непрерывную и диспергированную (зерна твердого тела, капли жидкости, газовые пузырьки) фазы. При движении через реактор каждый элемент диспергированной фазы полностью или частично сохраняет свои особенности, и с учетом проходящего в нем химического превращения такой элемент можно рассматривать как микрореактор периодического действия. Движение диспергированной фазы является частным случаем сегрегированных потоков. Обычно сегрегированный поток определяется как движение отдельных элементов жидкости (газа) или твердого тела, полностью изолированных друг от друга с точки зрения массообмена. [c.329]

    Многие единичные процессы (например, теплообмен, ректификация, осаждение и т. д.) изучены настолько полно, что на основе лабораторных исследований можно без большого риска сразу же рассчитывать аппараты промышленного масштаба. Следовательно, при этом отпадает необходимость проведения исследований в четверть- и полупромышленном масштабе (если, конечно, нет необходимости определения эффектов продолжительной работы всей непрерывнодействующей установки). Другие единичные элементы процесса, масштабирование которых вызывает затруднения (например, кристаллизация, процессы в гетерогенных системах), а также сложные химические превращения должны, как правило, исследоваться во всех запланированных промежуточных масштабах. [c.441]

    Древнегреческие философы не придавали никакого значения точным измерениям массы в химических реакциях. Об этом не думали и средневековые европейские алхимики, металлурги и ятрохимики (химики, применявшие свои знания в медицине). Первым, кто осознал, что масса является фундаментальным свойством, сохраняющимся в процессе химических реакций, был великий французский химик Антуан Лавуазье (1743-1794). Суммарная масса всех продуктов химического превращения должна точно совпадать с суммарной массой исходных веществ. Установив этот закон, Лавуазье опроверг прочно укоренившуюся флогистонную теорию горения (см. гл. 6). Он показал, что при сгорании вещества оно соединяется с другим элементом, кислородом, а не разлагается с выделением гипотетического универсального вещества, которое называли флогистоном. Закон сохранения массы является краеугольным камнем всей химии. Но в химических реакциях сохраняется не только суммарная масса веществ до начала реакции и после ее окончания должно иметься в наличии одно и то же число атомов каждого сорта независимо от того, в сколь сложных превращениях они участвуют и как переходят из одних молекул в другие. [c.63]

    Квазигомогенная модель [55—58]. Для больших совокупностей промышленных катализаторов отдельные элементы их структуры имеют размеры от десяти до десятка тысяч ангстрем при радиусе гранулы порядка нескольких милиметров. Следовательно, одна гранула содержит от 10 до 10 таких элементов. Поэтому со статистической точки зрения гранула катализатора может рассматриваться как гомогенная среда, в которой происходят химические превращения реактантов. [c.144]

    Итак, если молейула имеет N атомов, то размерность соответствующей и-матрицы N X N. На главной диагонали записываются неподеленные пары электронов всех последовательно расположенных N атомов молекулы, а недиагональные элементы определяют характер связи (одинарная, двойная, тройная и т. п.) между соответствующими атомами. Определим теперь для каждой элементарной реакции ансамбль молекулы (АМ) как совокупность молекул — исходных реактантов или совокупность молекул — конечных продуктов реакции. Нетрудно видеть, что математическое представление АМ есть блочно-диагональная i e-мaтpицa, составленная из 2 -матриц, которые находятся на главной диагонали. Совокупность всех возможных АМ образует семейство изомерных АМ (СИАМ), которое характеризует химические превращения реактантов. Конечно, множество всех АМ из СИАМ может быть однозначно представлено совокупностью Р = В ,. . ., В -Ве-матриц. Причем каждая Де-матрица содержит всю информацию о химической структуре молекул, составляющих заданный АМ, т. е. всю информацию о распределении связей и об определенных аспектах распределения валентных электронов. Поэтому каждая химическая реакция будет представлять собой не что иное, как взаимопревращение АМ вследствие перераспределения электронов между атомными остовами. [c.174]

    Как правило, один элемент ХТС может быть описан совокупно стью ескольких модулей. Например, насадочная колонна, в которой протекает неизотермический процесс хемосорбции, представляется математической моделью в виде совокупности нескольких модулей межфаЗ(Ного массообмена, химического превращения, нагрева и смешения— разделения. Некоторые элементы ХТС могут [c.55]

    ДГХП имеет множество вершин, состоящее из двух непересекающихся подмножеств— подмножества вершин, каждый элемент которого соответствует определенной химической реакции, и подмножества А — вершин, соответствующих как различным исходным соединениям, участвующим в химическом превращении, так и различным конечным соединениям, которые получены в результате данной химической реакции. [c.189]


Смотреть страницы где упоминается термин Элементы химические превращение: [c.130]    [c.4]    [c.22]    [c.87]    [c.346]    [c.209]    [c.227]    [c.229]    [c.12]    [c.200]    [c.76]    [c.173]   
Основы общей химии Том 3 (1970) -- [ c.344 ]




ПОИСК





Смотрите так же термины и статьи:

Превращения химические

Элемент химический

Элементы превращения



© 2025 chem21.info Реклама на сайте