Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бомба термоядерная

    Кроме того, дейтерид лития (Ь1В) — соединение лития с тяжелым изотопом водорода ( Н или О) применяется в термоядерных бомбах. [c.34]

    Разработаны и испытаны бомбы термоядерного синтеза с потенциалом разрушения в тысячи раз большим, чем у первых бомб расщепления. Одна большая бомба термоядерного синтеза может полностью разрушить самый крупный город мир , а если взорвать все имеющиеся сейчас бомбы термоядерного синтеза, то взрывная волна, пожары и радиоактивные осадки уничтожат все живое на земле. [c.179]

    Схема реакций в термоядерной (водородной) бомбе  [c.45]


    Широко используются также изотопы водорода — дейтерий и тритий. Тяжелая вода ОгО используется в атомной энергетике как замедлитель нештронов в атомных реакторах. Дейтерий и тритий используются в ка-честпе термоядерного горючего в водородных бомбах, поскольку при реакции [c.288]

    ТРИТИЙ — радиоактивный изотоп водорода с массовым числом 3, ядро которого состоит из одного протона и двух нейтронов (символ Т или Н). Период полураспада = 12,26 лет при распаде испускает мягкие -частицы. Незначительные количества Т. образуются в результате ядерных процессов. В промышленности Т. получают облучением лития медленными нейтронами в ядерном реакторе. Т.— газ. Соединение Т. с кислородом Т О — сверхтяжелая вода — образуется при окислении Т. над горячим оксидом меди (И) или при электрическом разряде. Известно большое количество соединений (главным образом органических), включающих в себя, наряду с обычным водородом, и Т. Т. применяют как горючее в термоядерных бомбах и в ядерной технике, как радиоактивный индикатор в различных исследованиях, для определения возраста метеоритов и др. [c.254]

    В 50-х годах XX в. был разработан способ получения энергии, необходимой для ядерного синтеза. В качестве источника энергии была использована бомба расщепления, и в результате была получена ядерная бомба еще большей разрушительной силы, которую называют по-разному водородная бомба , Н-бомба , термоядерная бомба , но более правильное название — бомба термоядерного синтеза. [c.179]

    В термоядерном оружии — водородной бомбе — термоядерное взрывчатое вещество находится в внде дейтерида лития-6 LID. Нейтроны, необходимые для инициирования термоядерной реакции, поставляются обычной атомной бомбой, конструктивно совмещенной с водородной бомбой. Образовавшийся тритий реагирует (при высокой температуре. которая также обеспечивается атомной бомбой) с дейтерием [c.272]

    Однако термоядерный синтез можно (и должно ) использовать не для разрушения. Одной из наиболее важных экспериментальных работ, проводимых в настоящее время, является попытка получить чрезвычайно высокие температуры, в сотни миллионов градусов, управляемым способом (а не в центре взрывающейся бомбы расщепления) и поддерживать эти температуры достаточно долго, с тем чтобы началась реакция термоядерного синтеза [c.179]

    Необходимые для протекания этих реакций температура ( 10 К) н нейтроны создаются взрывом атомного запала — цепной реакцией расщепления ядер или Количество энергии, высвобождающееся при взрыве мощной термоядерной (водородной) бомбы, превышает недельную выработку электроэнергии во всем мире и сравнимо с энергией землетрясений и ураганов. [c.662]

    Термоядерные реакции могут протекать лишь при очень высоких температурах (сверх миллиона градусов). Высокая энергия сталкивающимся частицам может быть сообщена в результате сильного разогрева в недрах звезд, при атомном взрыве или в мощном газовом разряде. До настоящего времени практически осуществлены лишь неуправляемые термоядерные реакции при термоядерных взрывах (водородная бомба). [c.45]

    Эдвард Теллер (род. 1908 г.) — немецкий физик, после прихода к власти нацистов эмигрировал в США, где его называют отцом водородной бомбы . Автор ряда фундаментальных исследований в области квантовой механики, квантовой химии, > в частности в области теории химических и особенно термоядерных реакций. Идея теоремы Яна— Теллера, по словам самого автора, принадлежит Л. Д. Ландау, высказавшему ее еще в 1934 г. [c.179]

    Количество энергии, высвобождающееся при взрыве мощной термоядерной (водородной) бомбы (- 10 эрг), превышает недельную выработку электроэнергии во всем мире и сравнимо с энергией землетрясений и ураганов. [c.45]


    Для этой реакции необходима температура 40000000 К. Высокие температуры, требующиеся для инициирования процесса ядерного синтеза, удалось получить при взрыве атомной бомбы. Это было осуществлено в термоядерной, или водородной, бомбе. [c.273]

Рис. 43. Схема изотопов трансурановых элементов, образовавшихся при взрыве термоядерной бомбы. Рис. 43. Схема изотопов трансурановых элементов, образовавшихся при взрыве термоядерной бомбы.
    Другое явление, в котором используется энергия связи ядер,— соединение синтез) ядер два очень легких ядра образуют одно ядро с большей массой и гораздо большей устойчивостью. При этом выделяется значительная энергия однако этот процесс требует очень высоких температур, порядка миллиона градусов. Достижение таких температур при использовании энергии, выделяющейся в процессе деления ядер, способствует соединению легких ядер. Прямым приложением этих реакций, называемых термоядерными , является водородная бомба. Схема процесса соединения ядер имеет следующий вид  [c.46]

    Процесс начинается взрывом атомной бомбы, играющей роль запала. Прн достижении высоких температур начинается неуправляемая термоядерная реакция образования гелия из лития и дейтерия  [c.69]

    Проблема осуществления управляемых термоядерных реакций не решена, так как учеными еще не найден способ более длительного сохранения тонкого плазменного шнура. По невыясненным причинам, несмотря на воздействие магнитного поля, плазма растекается в пространстве и термоядерные реакции, начавшись, быстро прекращаются. Осуществление управляемых термоядерных реакций (при взрыве водородной бомбы протекают неуправляемые термоядерные реакции) является одной из важнейших проблем современности. Успешное решение ее обеспечит человечество практически неисчерпаемым источником энергии. [c.16]

    Количество энергии, освобождающейся при реакции слияния ядер дейтерида лития, составляет приблизительно 60 Мт на 1 т материала, участвующего в процессе ядерного синтеза, тогда как на 1 т урана, подвергающегося делению, приходится лишь 10 Мт энергии. Самой большой из взорванных ядерных бомб была советская бомба, взорванная в ноябре 1961 г., это была атомно-термоядерная бомба с энергией взрыва около 60 Мт, что примерно в 10 раз превышает общую мощность бомб, взорванных за время второй мировой войны. [c.630]

    Теллер Эдвард (р. 1908), американский физик. Родился в Венгрии, учился и работал в Германии, Дании, Великобритании, с 1935 г. в США. Труды по ядерной физике, термоядерным реакциям, астрофизике. Участник создания американских атомной и термоядерной бомб. [c.456]

    Тритий — радиоактивный изотоп водорода с массовым числом 3, ядро которого состоит из одного протона и двух нейтронов (символ Т, или Н), период полураспада 7 i/j= 12 лет, при распаде испускает Р-частицы. Незначительные количества Т. образуются в результате ядерных процессов. В промышленности Т. получают, облучая литий медленными нейтронами. Соединение Т. с кислородом (сверхтяжелая вода) получается при окислении трития в электрическом разряде. Известен также и ряд органических соединений Т. По своим химическим свойствам Т. отличается от обычного водорода неодинаковой скоростью реакций, вызванной разницей в массах. Т. используют как горючее в термоядерных бомбах и в ядерной энергетике. Кроме того, он применяется как радиоактивная метка в различных исследованиях (химических, биологических и др.), с помощью Т. можно определить происхождение осадков (дождей), узнать возраст метеорита или выдержанного вина и др. Тритон — ядро атома трития, обозначается Н. Состоит из одного протона и двух нейтронов. Масса 3,01646. Используется как бомбардирующая частица в ускорителях заряженных частиц, [c.138]

    Для того чтобы началась реакция ядерного синтеза, необходимо достичь температуры порядка миллиона градусов. Поскольку единственным известным в настоящее время средством достижения таких температур являются реакции ядерного деления, для возбуждения реакции водородного синтеза используется атомная бомба, основанная на реакции деления. Это обстоятельство делает маловероятным проведение самоподдерживающейся цепной реакции ядерного синтеза (термоядерной реакции), управляемой подобно тому, как это осуществляется в ядерном реакторе для реакций деления . Предполагается, что энергия, вьщеляемая звездами и в их числе нашим Солнцем, образуется в результате реакций ядерного синтеза, аналогичных указанным выше реакциям. В зависимости от возраста и температуры звезды в таких реакциях могут принимать участие ядра углерода, кислорода и азота, а также изотопы водорода и гелия. [c.437]

    ДЕЙТЕРИЙ (тяжелый водород) В, стаб. и.зотоп водо юда, мае. ч. 2, ат. м. 2,014. Прир. водород содержит 0,012— 0,016% по массе В. Газ —254,5 °С, г ,, —249,5 °С Ср 29,2 Дж/(моль-К) (ирн 298 К), 5 144 Дж/(моль-К), Молекула двухатомна. Ядро атома Д. наз. дейтроном, Получ. ректификация водорода многоступенчатый электролиз воды. Примен. изотопный индикатор входит в состав ВВ в водородной бомбе перспективное термоядерное горючее. [c.149]

    Хорошо изучены ядерные характеристики тринадцати изотопов нептуния — от 229-го до 241-го. Изотопы с большим массовым числом, вплоть до нептуния-257, образуются при взрыве водородной бомбы. Об этом свидетельствует появление в продуктах термоядерного взрыва атомов фермия. Изучить свойства тяжелых нептуниевых ядер пока невозможно они слишком неустойчивы и переходят в высшие элементы задолго до извлечения радиоактивных продуктов подземного взрыва. [c.386]

    К июню 1951 г. наша программа создания водородной бомбы переживала тяжелый кризис . Это слова американского журналиста У. Лоуренса, волею судеб ставшего официальным историографом американского атомного оружия. Стремясь во что бы то ни стало первыми создать сверхбомбу , американцы бросили на решение этой проблемы все силы и средства. Самое большее, что удалось им сделать,— это взорвать термоядерное устройство, получившее кодовое название Майк . Именно устройство, а не бомбу Майк , оснащенный сложными рефрижераторными установками, был настолько тяжел, что его не мог поднять ни один самолет. [c.433]

    Поскольку " Ри является ядерным топливом, то потребность в нем постоянно возрастает. Производят в реакторах-размножителях, работающих на быстрых нейтронах. Чистый (без примесей " Ри и " "Ри) получают в реакторах по специальной технологии и используют в ядерных и термоядерных бомбах. Радионуклид " Ри применяется для приготовления атомных электрических батарей и нейтронных (а, п) источ- [c.292]

    Термоядерные реакции. Образование более тяжелых ядер из легких также происходит с выделением энергии. В обычных условиях такие реакции не идут. Необходима затрата энергии, достаточной для пртодоления сил кулоновского отталкивания между ядрами. Это достигается различными путями, в частности, в водородной бомбе термоядерная реакция инициируется взрывом обыкновенной атомной бомбы. Об энергетических эффектах некоторых ядерных реакций дают представление такие данные (в Мэе)  [c.717]


    Термоядерный синтез основан на соединении атомных ядер в более сложные. Обычно два очень легких ядра образуют одно ядро с большей массой и очень большой устойчивостью, Прн этом выделяется колоссальная энергия. Однако термоядерные реакции требуют очень высоких температур — порядка миллиона градусов. Достижение таких температур осуиц ствляется цепной реакцией деления j aU пли giiPii. На использопаиии этих реакций основана термоядерная (водородная) бомба. [c.69]

    Реализовать подобные термоядерные процессы -в земных уело-ВИЯХ оказалось возможным лишь с помощью высокой температуры (порядка десятков миллионов градусов), возникающей при взрыве атомной бомбы. Только последняя могла послужить спичкой , способной дать начало искусственно осуществляемым реакциям синтеза атомных ядер. [c.529]

    Искусственно вызываемые термоядерные процессы были пока реализованы лишь Рис. ХУ1-31. Прннци- в форме т. н. водородной бомбы, пиальная схема водород- принципиальная схема которой показана ной бомбы. на рис. ХУ -31 (АБ — атомная бомба). [c.530]

    J-b3 He. Газ, Г л—252,52 С, iK —248,12 °С. Молекула двухатомна. Ядро атома Т наз. тритоном. Получ. в ядерных реакторах "Li +jn= T -t- Не. И, Зотоннып индикатор. Входит в состав ВВ в водородной бомбе. Перспективен как термоядерное горючее. ПДК 7,4-К) Бк/л. [c.595]

    Дейтерий D( H) (лат. Deuterium — тяжелый водород) —стабильный изотоп водорода с массовым числом 2. Открыт в 1932 г. Содержится в природных соединениях водорода. Д. выделяют электролизом или ректификацией воды. Д. широко используется в атомной энергетике как замедлитель нейтронов в атомных реакторах в смеси с тритием применяют для термоядерной реакции в водородных бомбах. Декан СНз(СН2)8СНз— бесцветная жидкость. Содержится в нефтепродуктах. Составная часть дизельных топлив. [c.45]

    Ядерное горючее включает уран-235, уран-233, уран-238, плу-тоний-239. При детонации термоядерных бомб, а также при делении урана-238 образуется огромное количество быстрых и тепловых нейтронов, которые вступают в следующие реакции с радионуклидами, составляюш ими ядерное оружие и(п,у) и(п,у) и(Ь,у) 238у. и конструктивными материзлами бомб А1(п,у) [c.312]

    Для осуществления приведенной реакции взаимодействующие частицы должны обладать достаточной кинетической энергией, чтобы преодолеть кулоновскую силу отталкивания их зарядов. Поэтому для инициирования термоядерного взрыва ядерные устройства снабжаются запалом в виде атомной бомбы, которая находится внутри оболочки из дейтерида лития ( H Li). В такой бомбе часть нейтронов, гюлучающихся при делении или Ри, используется в реакции [c.157]

    В процессе нейтронной активации образование радионуклидов происходит как в ядерных реакторах, так и при ядерных взрывах. Так, при взрыве термоядерной бомбы в результате юаимодействия высвобождающихся быстрых (14,5 МэВ) нейтронов с ядрами атмосферного азота по реакции п,р) образуется радиоактивный углерод с, имеющий период полураспада 5730 лет. В результате испытаний ядерного оружия в атмосфере в 1970-е гг. концентрация С в воздухе в отдельные годы значительно ( 1,5 раза) превышала естественный уровень [1]. При активации нейтронами в ядерных реакторах непрерывно образуются ядра распадаюшдеся в долгоживущий радионуклид [2]  [c.158]

    Эта реакция используется в ядерных реакторах для получения вторичного топлива, поскольку ядра Ри делятся тепловыми нейтронами, а также для получения оружейного плутония, применяемого в атомных и термоядерных бомбах. Дальнейшая активация Ри нейтронами реактора приводит к получению тяжелых изотопов плутония ( " Ри, Ри, Ри) и еще более тяжелых атомных ядер изотопов амершщя, кюрия и др. Активность актиноидов, накапливающихся в реакторе за время кампании, составляет примерно 25 % от суммарной активности продуктов деления. Активация нейтронами стабильного изотопа Сз, образующегося при делении с выходом 6,6 %, приводит к накоплеьшю радиоактивного (2,062 г.). Поскольку накапливается в реакторе при активации, а при ядерных взрывах он не образуется, то отношение активностей С8 в пробах, взятых из атмосферного воздуха, грунта или водной среды, является важным тестом для определения источника выброса радиоактивных веществ — аварии ядерного реактора или взрыва ядерного устройства. Во время работы реактора за счет активации нейтронами конструкционных материалов накапливаются и другие не менее важные радионуклиды Ре (2,7 г.) и Со (5,27 г.). [c.158]


Смотреть страницы где упоминается термин Бомба термоядерная: [c.114]    [c.427]    [c.96]    [c.423]    [c.6]    [c.108]    [c.131]    [c.266]    [c.135]    [c.158]    [c.263]    [c.287]   
Общая химия (1968) -- [ c.784 ]




ПОИСК





Смотрите так же термины и статьи:

Водородная бомба, термоядерная реакция



© 2025 chem21.info Реклама на сайте