Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Конденсация изотермическая

    Линия АВВЕ отражает типичный процесс изотермической ретроградной конденсации, которая происходит в пласте любого газоконденсатного месторождения. В точке А находится отдельная жидкая фаза за пределами фазовой оболочки. По мере падения давления продукт пласта достигает области, в которой начинается конденсация (точка В). При дальнейшем снижении давления жидкости образуется еще больше за счет изменения крутизны линий равных объемов. Заштрихованная область ограничивается точками изгиба этих линий. После выхода процесса за пределы заштрихованной области жидкости образуется все меньше и меньше, пока не будет достигнута точка росы Е. Ниже точки Е жидкость не образуется. [c.27]


    Определите изменение энергии Гиббса (изобарно-изотермического потенциала) при равновесной конденсации 1 кмоль водяного пара при 373 К и давлении [c.23]

    Найти изменение энтропии при изотермическом ( = 80° С) сжатии паров бензола от давления 0,4 до 1 атм с последующими конденсацией и охлаждением жидкого бензола до 60° С, если мольная теплота испарения бензола при 80°С равна 7380 кал/моль и Р(ж) = 0,43 кал/град-г. Пары бензола считать идеальным газом. Ответ. —23,66 кал/град. [c.128]

    На таких диаграммах можно легко проследить ход тех изменений, которым подвергается вещество (испарение, конденсация, сжатие, расширение, охлаждение, изменения адиабатические, изотермические, изоэнтальпные и другие). Для любой точки линии изменения можно быстро найти на диаграмме параметры, характеризующие состояние вещества (энтропию, энтальпию, давление, объем, температуру). В работе, связанной с развитием технологического метода, когда обязателен, например, выбор оптимального варианта процесса, проходящего при рассмотренных нами изменениях системы, энтропийные диаграммы незаменимы. Кроме того, следует помнить, что, особенно в областях низких температур и высоких давлений, поведение реальных газов резко отличается от поведения идеального газа, и расчеты по рассмотренным выше уравнениям требуют внесения поправок, трудно поддающихся вычислению, а иногда и не очень точных. Проведение расчетов с использованием энтропийных диаграмм, составленных по экспериментальным данным, обеспечивает получение значительно более точных результатов в короткое время. [c.142]

    Влияние волнового режима течения пленки конденсата на интенсивность теплоотдачи, как уже упоминалось, было теоретически и экспериментально исследовано П. Л. Капицей. Основной результат этих исследований заключается в выводе, что вследствие волнового режима течения пленки коэффициент теплоотдачи при конденсации пара на вертикальной поверхности должен быть выше приблизительно на 20% по сравнению со случаем чисто ламинарного течения, которому отвечает формула (4.15) Нуссельта. Эта поправка была получена П. Л. Капицей при допущении, что изотермическое течение пленки имеет периодический волновой характер. В действительности же наблюдается беспорядочный нестационарный характер волнового движения пленки, обеспечивающий более интенсивное перемешивание жидкости и, как следствие этого, более интенсивную теплоотдачу. Для этих условий, как было показано Лабунцовым [95], поправка на волновое движение зависит от безразмерного комплекса Ке Ка ". Для большинства жидкостей при обычных условиях пленочной конденсации комплекс Ка = [c.128]

    Заштрихованная площадь, находящаяся вправо от вертикали, проходящей через точку С, и петлей, образуемой кривой пара (конденсации), соответствует области явлений обратной конденсации. Изотермическое сжатие пара из точки 6 ведет вначале к выделению жидкости. Например, при давлении Р имеем пар / и жидкость 2. При дальнейшем сжатии жидкость постепенно исчезает и в точке а существует только пар. Аналогично этому при изотермическом расширении пара из точки а вначале происходит конденсация в отличие от того, что наблюдается в обычных условиях. [c.48]

    К первому типу относятся растворы так называемого нормального вида, у которых равновесные изотермические и изобарные кривые кипения и конденсаций, построенные по экспериментальным данным, во всем интервале мольных составов изменяются монотонно и не имеют экстремальных точек. Давление пара раствора и его температура закипания при любой концентрации являются промежуточными величинами между давлениями паров и точками кипения чистых компонентов системы, хотя и отклоняются от значений, рассчитанных по закону Рауля. Смотря ро тому, в сторону больших или меньших значений наблюдаются отклонения от линейного закона, говорят о положительных или. отрицательных отступлениях раствора от идеальности. [c.36]


    Капиллярный перенос, столь существенный в процессах сущ-ки, в мембранах не оказывает заметного влияния, поскольку в изотермических условиях при изотропной поровой структуре градиент капиллярного потенциала Ч , определяемый уравнением (2.41), равен нулю, однако капиллярная конденсация сужает сечение пор, снижает свободное сечение для газового потока, что приводит к падению проницаемости мембран. При больших значениях относительного давления Р Ру возникает фильтрационный перенос жидкой фазы под действием общего градиента давления, вычисляемый также по уравнению Козени— Кармана. Поскольку рж>Рг, проницаемость пористых мембран резко возрастает, как это отмечено для диоксида углерода и других веществ при проведении процесса вблизи линии насыщения [3]. [c.64]

    К первому типу относятся растворы, так называемого, нормального вида, у которых равновесные изобарные и изотермические кривые кипения и конденсации, построенные по экспериментальным данным, имеют форму, идентичную с формой этих же равновесных кривых идеального раствора. Опытные данные отклоняются от значений свойств, рассчитанных по законам идеальных растворов, но характерным является то, что обе экспериментальные кривые во всем интервале мольных соотношений сохраняют монотонность, не имеют экстремальных точек и, что давление пара раствора и его температура кипения на всем интервале концентраций являются промежуточными между упругостями паров и точками кипения чистых компонентов системы (фиг. 1 и 2). [c.11]

    Наличие экстремальных, максимальных или минимальных точек на кривых равновесия, термодинамическая теория растворов объясняет ассоциацией или диссоциацией молекул одного из жидких компонентов раствора, и это вполне оправдывается опытом. Если проанализировать, какие пары жидкостей образуют растворы, характеризующиеся максимумом суммарной упругости паров при постоянной температуре системы, то окажется, что большинство известных пар таких компонентов представляют смеси жидкостей, содержащих гидроксильную группу смешанных с жидкостями, свободными от гидроксильных групп. Такого рода смеси имеют тенденцию к ассоциации. С другой стороны, водные растворы галоидоводородных кислот, характеризующиеся явно выраженной диссоциацией, относятся к категории растворов, у которых изотермические кривые кипения и конденсации имеют точку минимума (фиг. 4). [c.13]

    Если изотермические кривые кипения и конденсации рассматриваемой системы построить при некоторой другой температуре, то в зависимости от того, будет ли она больше или меньше, будут больше или меньше значения упругостей компонентов, и вся равновесная диаграмма сместится вверх или вниз. [c.22]

    В случае систем частично растворимы< компонентов не эвтектического класса изотермические кривые кипения и конденсации имеют вид, изображенный на фиг. 12. Этот случай отличается от предыдущего тем, что оба жидких слоя А к В при определенной температуре выделяют пар Е, состав которого лежит вне интервала концентраций от хд до Лв. Кривая кипения или изотермическая кривая суммарного давления паров раствора в функции состава жидкой фазы претерпевает разрыв АВ на участке концентраций от Ха до Хв и представляется двумя ветвями АС и BD, являющимися кривыми упругости жидких растворов на интервале составов от О до Хв и от Ха до 1. Кривая конденсации или изотермическая кривая Фиг. 12 [c.23]

    Как показали исследования парожидкого равновесия частично растворимых систем под постоянным давлением, изобарные кривые кипения и конденсации имеют вид, взаимно обратный соответствующим изотермическим кривым, рассмотренным выше. [c.24]

    На фиг. 3, 4, 20 и 21 представлены равновесные изотермические и изобарные кривые кипения и конденсации для обоих типов однородных в жидкой фазе азеотропов. До настоящего времени нет достаточно надежного общего метода расчета данных парожидкого равновесия азеотропов и наиболее верным путем остается их экспериментальное определение. Трудность корреляции равновесных данных азеотропов заключается в том, что [c.33]

    На основании анализа этой и других аварий можно сделать вывод, что существующие технические возможности и средства тушения пожаров и локализации крупных аварий и взрывов не соответствуют требованиям быстрого подавления пожаров больших объемов взрывоопасных сжиженных газов и ЛВЖ- В этой связи еще раз следует подчеркнуть, как важно правильно выбрать способ хранения и конструкцию резервуаров для сжиженных взрывоопасных и токсичных газов и ЛВЖ. Совершенно очевидно, что предпочтение должно отдаваться подземным способам хранения при минимальном избыточном давлении. При необходимости наземного хранения даже сравнительно небольших объемов следует по возможности применять изотермические хранилища или резервуары под меньшим избыточным давлением с использованием соответствующих компрессорных установок для конденсации паров, образующихся за счет притока тепла из окружающего воздуха. [c.168]

    На изотермических хранилищах и хранилищах при умеренном давлении компрессорные установки для конденсации паров должны быть автоматизированы. Они должны автоматически включаться и выключаться по верхнему и нижнему пределам давления в резервуарах с сигнализацией о достижении этих пределов. [c.182]

    При изотермическом сжатии ненасыщенного пара состава Xj фигуративная точка системы движется вверх по вертикали, конденсация пара начинается в точке а (рис. VI, 8) при давлении Pj. Первые капли жидкости имеют состав x образовавшаяся жидкость содержит меньше компонента А, чем конденсирующийся пар. [c.195]

    Нормальной температурной областью для проведения процессов ректификации считают интервал от 20 до 250° С. Если температуры кипения разделяемых веществ лежат ниже комнатной температуры, то проводят низкотемпературную ректификацию с использованием специальных хладоагентов для конденсации паров дистиллята. Процессы перегонки, протекающие при 250—400° С, относят к высокотемпературной ректификации. Возможна также изотермическая перегонка, при которой температуру в кубе поддерживают постоянной, а изменяют рабочее давление. [c.249]

    Найдите изменение энтропии при изотермическом Т = 353,2 К) сжатии паров бензола от = 4,0532-Ю Па до Р = 1,0133-10 Па с последующими конденсацией и охлаждением жидкого бензола до Т = 333,2 К, если АЯ ар = 30877,92 Дж/моль и (а)с.н. = = 1,80 Дж/(г-К). Пары бензола считать идеальным газом. [c.90]

    В какой-либо обособленной части теилообменника отсутствуют фазовые переходы. Если кипение и конденсация имеют место, то они должны происходить равномерно по всей теплоотдающей поверхности. Таким образом, одинаковым изменениям температуры теплоносителя отвечают одинаковое количество переданной теплоты, т. е. зависимость количества переданной теплоты от температуры носит линейный характер (изотермическое кипение и конденсация подгоняются под эти условия). [c.41]

    Для сжатия по рассмотренной ступенчатой изотерме X представляет часть формулы (III.62), заключенную в квадратные скобки. Функции X для различных случаев изотермического сжатия влажного газа с конденсацией и без нее приведены в табл. III.4 [уравнения (III. 64) — (III.74)]. [c.101]

    Метод определения работы изотермического сжатия 1 кг газа показан на рис. П1-31, а метод определения минимальной работы конденсации 1 кг газа — на рис. П1-49. Учитывая степень конденсации Z (вычисляемой по 2, 1), найдем по уравнению (П1-176) потери работы. [c.267]


    По диаграмме I—5 величину А можно определить в виде отрезка (рис. П1-52). Работу I изотермического сжатия 1 кг газа (/—2) представляет, в соответствии с изложенным выше (см. рис. П1-32), отрезок 2—9 на рис. П1-52. Минимальную работу конденсации 1 кг газа миш согласно диаграмме, приведенной на рис. П1-49, представляет отрезок Г—8 на рис. П1-52. Проводим [c.268]

    Чем отличается критическое состояние вещества от состояния изотермического кипения — конденсации  [c.35]

    Системы, совокупный состав а которых попадает в интервал кснцентраций от лд до хв распадаются на насыщенные растворы А и В, и линия кипения для них может быть представлена горизонталью АВ. Если изотермические кривые суммарного давления паров представить в функции состава у паровой фазы, т. е. нанести на диаграмму так называемые кривые точек росы нли кривые конденсации, то они для рассматриваемой системы изобразятся кривыми СаЕ и ОвЕ, пересекающимися в угловой точке Е, которая показывает, что обоим жидким равновесным насыщенным растворам составов л д и лв отвечает один и тот же пар, состава уе  [c.22]

    Из рассмотрения равновесных диаграмм на фиг. 3, 4, 20 и 21 можно сделать заключение о взаимно обратном характере равновесных изобарных и, изотермических кривых кипения и конденсации. А аксимуму суммарной упругости пара раствора при постоянной температуре отвечает минимум температуры кипения при постоянном давлении, и наоборот. [c.34]

    На фиг. 54 и 55 представлены равновесные изотермические и изобарные кривые кипения и конденсации для этого случая. На изотермической равновесной диаграмме линия АВ представляет суммарную упругость паров сохраняющую для гетерогенной жидкой фазы при лю-брж соотношении обоих / идких слоев постоян-нре значение. Постоян- нкм будет и состав Уе па а йновесного обоим жидким слоям, определяемый абсциссой точки Е. Линии АС а СЕ, с одной стороны, и ВО и ОЕ, с другой, изображают условия парожидкого равновесия для случаев, когда в жидкой фазе присутствует только один из компонентов а или ТП) соответственно, а в паровой фазе представлены оба. [c.162]

    Для повышения надежности электроснабжения контрольно-из-мерительных приборов и средств автоматизации на складах сжиженных газов должны быть установлены аккумуляторные батареи для питания приборов контроля и цепей управления. Электроснабжение оборудования, обеспечивающего необходимый режим ох- лаждення и давления газа в резервуарах изотермического хранения (компрессорные станции для конденсации паров сжиженного газа), должно быть от двух источников. В качестве второго источника электроснабжения может быть независимый от первого источник или резервный аварийный генератор тока с дизельным двигателем. [c.182]

    Второй вид энергии отражается членом Qp=T S, который определяет ту часть энтальпии, которая в изотермическом процессе не может быть превращена в работу, а переходит только в теплоту, рассеивающуюся во внешнюю среду. Поэтому величину Qp=T S называют связанной энергией или обесцененной энергией. В тепловых машинах связанной энергией является энергия межмолекулярного взаимодействия частиц рабочего тела (водяной пар). Теплота экзотермических процессов (конденсация или реакции синтеза) также может явиться примером связанной энергии. Это броунова часть энергии Н. [c.121]

    КОСТИ х- И пара при постоянном полном давлении р. Существуют два предельных случая. Если температура охлаждающей стенки очень близка к температуре росы, что означает малую скорость конденсации, то процесс конденсации является почти изотермическим и мольная доля жидкости находится в изотермическом равновесии с мольной долей пара 1х1=х (ух)]. Если же температура стенки Тщ, намного меньше температуры росы Тчто означает большую скорость конденсации, то температура конденсата может быть близка к температуре кипения Т . При этом мольная доля жидкости практически равна мольной доле пара Х1=у1. В предположении о ламинарном характере течения в жидкой и паровой пленках на рис. 5 показаны профили температуры и концентрации для каждого из этих предельных случаев. Уравнения для потоков в паровой фазе для бинарной смеси имеют вид [c.92]

    Общее количество тепла, которое отнимается от газа в этом процессе, эквивалентно площади ЬВАа, а количество тепла, которое отнимается для собственно сжижения, равное теплу, отнимаемому при изобарическом охлаждении газа (АО) и изотермической конденсации его (ОС), эквивалентно площади ЬСВАа. Разность между указанными площадями, т. е. площадь АВСО, выражает минимальную работу сжижения. [c.218]

    Из полученных данных следует, что асфальтепы состоят из конденсированных ароматических структур, степень конденсации которых не очень велика, хотя число различных полициклических систем может быть большим. Возможности масс-спектроскопиче-ского метода при исследовании асфальтенов могут быть полностью реализованы только после дальнейшего исследования модельных соединений с очень большим молекулярным весом и упрощения состава асфальтенового образца различными методами разделения. В последнее время пытаются использовать пиролиз для целей характеристики структуры асфальтенов. Так, например, в сообщении [36] приведены результаты анализа масс-спектров летучих продуктов (в интервале 35—400° С), полученных при пиролизе асфальтенов, выделенных из гудрона по процессу Добен . Был выбран ступенчато-изотермический режим с шагом от 20 до 50° при выдержке от 5 мин. до 2 час. Появление основных групп пиков, начавшееся с 75° С, характеризовало отщепление алкильных заместителей, от метана до гексана, а также бензола и циклогексана. [c.230]

    На диаграмме Т—1 величину 2 представляет отношение отрезков 0С1АС. Так как энтальпии ц и й постоянны (это энтальпии газа и кипяшей жидкости под нормальным давлением р]), то степень конденсации зависит только от изменения энтальпии 1— 2 во время изотермического сжатия, т. е. от давления рг после сжатия. [c.266]

    S Под изотермической перегонкой понимают испарение мелких капель и конденсацию пара на более крупных или на плоской поверхности, что является следствием уравнения Томсона (Кельвина) RTIn(pr/pO) =2i/r, гласящем, что давление насыщенного пара рг над каплей будет тем больще, чем больше поверхностное натяжение и чем меньше радиус капли г, т,е. чем больше кривизна поверхности. [c.183]

    Конденсация паров в конденсаторе // протекает изотермически при температуре Т (горизонтальная линия 2—3). Жидкий холодильный агент из конденсатора поступает в pa иJиpитeльннй цилиндр (на рис. XVH-5, а вместо расширительного цилиндра, применяемого в идеальном цикле, гкжазац дроссельный вентиль III, используемый в реальном цикле), I котором адиабатически расширяется, приобретая температуру Г,,, соответствующую давлению испарения (адиабата 3—4, рис. XVH-5, б). Далее жидкий хладоагент испаряется прн постоянной температуре в испарителе IV, отнимая тепло от охлаждаемой среды (наиравление движения охлаждаемой среды, омывающей поверхность теплообмена испарителя, показано стрелками). Процесс испарения при температуре изображается изотермой 4—/. Пары при температуре (точка /) засасываются компрессором 1, и цикл повторяется снова. Таким образом, весь процесс состоит из двух адиабат (отрезки /—2 и 3—4) и двух изотерм (отрезки [c.655]

    Простейшим случаем конденсации на ядрах считается тот, когда ядро обладает сферической формой и полностью смачивается, так что его можно рассматривать как подзародыш (Крыстанов, 1941 г.). Тогда скорость образования зародышей будет пропорциональна числу подзародышей в 1 см . Энергетический барьер, равный работе образования зародыша на смачиваемом ядре, вычисляется так же, как и в других, уже рассмотренных случаях, т. е. как сумма поверхностной и объемной работ изотермического образования зародыша  [c.103]

    Дзержинским ОКБА разработаны аналитические газовые хроматографы с цифровым заданием режима работы серии Цвет-500 . Модель Цвет-530 этой серии имеет два детектора катарометр и пламенно-ионизационный. Хроматограф имеет в своем составе криогенное устройство для поддержания в термостате колонок температур от —99° до 399°С. Для определения микропрнмесей в газах хроматограф оснащен обогатительным устройством, где обогащение производится путем низкотемпературной адсорбции или конденсации. В хроматографе используются стальные и стеклянные насадочные колонки, а также стеклянные капиллярные колонки. Двухканальная схема газа-носителя позволяет устанавливать одновременно две насадочные колонки. Температурный ре -ки.м изотермический и линейное программирование температуры. С помощью интегратора осуществляется обработка информации при работе с пламенно ионизационным детектором и катарометром. [c.63]


Смотреть страницы где упоминается термин Конденсация изотермическая: [c.13]    [c.24]    [c.141]    [c.166]    [c.72]    [c.729]    [c.145]    [c.238]    [c.5]    [c.93]    [c.55]    [c.647]    [c.130]   
Общая химия (1968) -- [ c.139 ]




ПОИСК







© 2024 chem21.info Реклама на сайте