Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

оболочек связывающие

    В соответствии с этим атомы всех элементов основной подгруппы первой группы периодической системы, обладая одним электроном, избыточным по сравнению с атомами инертных газов, отдают на образование связи по одному электрону, атомы элементов основной подгруппы второй группы — по два электрона, третьей — по три, переходя при этом в состояние положительных ионов. Наоборот, атомам элементов основных подгрупп седьмой, шестой групп недостает соответственно одного или двух электронов до структуры электронных оболочек, свойственной атомам инертных газов. Поэтому они будут стрем.иться достроить свою наружную электронную оболочку, связывая новые электроны и переходя при этом в состояние отрицательно заряженных ионов. Однако здесь речь идет не обязательно о полной передаче электрона. Эффективная величина заряда образующихся положительных, так и тем более отрицательных ионов большей частью меньше, чем число электронов, передаваемых данным атомом на образование связей или приобретаемых им при их образовании. [c.59]


    II. Так как за ГПГ нет воды, не участвующей в первичном гидратационном процессе, и имеется ее дефицит по сравнению с требуемыми координационными числами ионной гидратации, то молекулы добавляемой воды устремляются в незаполненные гидратные оболочки, связываясь тем более прочно, чем выше концентрация. При этом следует учесть и относительную гидрофильность катиона и аниона, приводящую к перераспределению гидратной воды. Все это должно приводить к дополнительному унижению теплоемкости. [c.237]

    II. Так как за ГПГ нет воды, не участвующей в первичном гидратационном процессе, и имеется ее дефицит по сравнению с требуемыми координационными числами ионной гидратации, то молекулы добавляемой воды устремляются в незаполненные гидратные оболочки, связываясь тем более прочно, чем выше концентрация. При [c.242]

    Несмотря на то что основная масса атома сосредоточена в ядре и общее число электронов в атоме определяется зарядом ядра, многие ученые делили атом на две независимые части — ядро и электронную оболочку,, связывая периодически изменяющиеся свойства элементов лишь с последней. Однако электроны оболочки и ядро находятся в электромагнитном взаимодействии, а потому на свойства атомов должно оказывать влияние и ядро. [c.147]

    Термодинамические расчеты энтропии растворителя в растворе показы вают, что энтропия воды уменьшается при растворении в ней ионов (пр.и малых концентрациях). Этот факт также соответствует представлению о том, что ионы связывают молекулы воды в первичную сольватную оболочку (увеличение упорядоченности распределения молекул вызывает уменьшение энтропии) .  [c.420]

    Как правило, порядок заполнения электронных п/-оболочек по мере увеличения атомного номера элемента (15, 25, 2р, 35, Зр, 45, М, 4р,. ..) объясняется тем, что орбитальные энергии в многоэлектронном атоме возрастают в той же последовательности. Так, например, опережающее заполнение 45-АО в атомах К и Са по сравнению с М-кО связывают с тем, что 45 < Ёзй. Но тогда встает вопрос почему 4 < ез Обычно ответ сводится к тому, что преимущество 45-А0 обусловлено наличием трех внутренних локальных максимумов, которые обеспечивают их большее проникновение в остов по сравнению с Зй-АО, не имеющими таких максимумов. [c.102]

    Остановимся предварительно на некоторых отличиях свойств, присущих положительному водородному иону Н+. Водородный атом обладает той особенностью, отличающей его от всех остальных атомов, что, отдавая свой электрон, он остается в виде ядра без электронов, т. е. в виде частицы, диаметр которой в тысячи раз меньше диаметра остальных атомов. Кроме того, вследствие отсутствия у него электронов ион Н+ не испытывает отталкивания от электронной оболочки другого атома или иона, а, наоборот, притягивается ею. Это позволяет ему ближе подходить к другим атомам и вступать во взаимодействие с их электронами (и даже внедряться в их электронную оболочку). Поэтому в жидкостях водородный ион Н+ большей частью не сохраняется в виде самостоятельной частицы, а связывается с молекулами других веществ. В воде он связывается с молекулами Н2О, образуя ион HoO" , называемый ионом гидроксония-, с молекулой аммиака он связывается, образуя ион NHi — ион аммония и т. д. [c.82]

    НЫХ скоростей, умноженных на параметры физических свойств. Приведенная скорость определяется как плотность объемного расхода фазы, деленная на среднюю площадь поперечного сечения потока. Течения в реальных теплообменниках отличаются от идеализированного поперечного сечения, показанного на рис. 9, некоторыми эффектами, которые включают 1) сепарацию из-за изменений в направлении потока, поступающего в теплообменник, разделенный перегородками (например, газовые пузырьки могут образовываться на той стороне перегородки, которая расположена ниже по течению) 2) утечки жидкости через пространства между трубами и перегородками и оболочкой. Вокруг пучка возникает также обходное течеиие. В двухфазных течениях эти явления связываются с разделением фаз, так что двухфазный состав байпасных потоков и утечек жидкости обычно отличен от состава основных противоточных течений. [c.186]


    Таким образом, разрыв ковалентной связи для получения двух нейтральных соединений всегда должен дать два радикала, каждый со свободной валентностью и обладающий активностью свободного радикала. Разрыв ионной связи может дать либо два иона с заполненными оболочками, имеющими только электростатический поляризующий момент (MgO = Mg + + О ), либо два иона, один из которых (обычно катион) также имеет электрон с непарным спином и поэтому имеет дополнительные свойства, присущие радикалу (например, NiO = NiO +0 -). Молекулы веществ, образующих твердые поверхности, дегазированные в вакууме, обладают множеством свободных связей, по которым могут идти реакции с молекулами газовой фазы (хемосорбция) с образованием различных поверхностных комплексов- Очевидно, что каталитическое действие твердого вещества зависит от составляющих его лептонов. Раньше исследователи связывали высокую каталитическую активность с переменной валентностью, цветом, магнитными свойствами и т. д. Сравнительно недавно метод электронной проводимости стал доминирующим в определении их свойств. Он лучше отражает электронную структуру оболочек на основе периодической системы, хотя дает лишь общую характеристику, которая не может заменить результатов, получаемых при детальном изучении химии и физики исследуемых твердых тел. [c.20]

    Влага пасты карбоната бария имеет адсорбционную связь, т.е. на поверхности твердого тела образуется поверхностный мономолекулярный слой адсорбированной воды (гидратная оболочка), который связывается наиболее сильно. Последующие слои связанной жидкости (полимолекулярная адсорбция) удерживаются менее прочно, а свойства ее постепенно приближаются к [c.14]

    Ион (катион) слишком гидрофилен, чтобы эффективно проникать через толстый ( 10 нм) гидрофобный слой липидов и липопротеинов, входящих в состав природны.< и искусственных мембран. Однако селективно связываясь с полярными группами, находящимися внутри макроциклического кольца, катион оказывается покрытым гидрофобной оболочкой, что позволяет ему легче проходить через мембрану. [c.282]

    Ребиндер [18] неоднократно обращал внимание на устойчивость коллоидных систем в предельно стабильном состоянии и указывал на увеличение скорости оседания суспензий при дальнейшем увеличении концентрации стабилизатора. Понижение устойчивости связывалось также с уменьшением толщины стабилизирующих защитных оболочек. [c.49]

    При прочих равных условиях толщина сольватной оболочки должна определяться соотношением энергий взаимодействия между растворенной молекулой и молекулами сольвента и энергии взаимодействия между молекулами самого сольвента, насыщаемостью и дальнодействием энергетического поля растворенной молекулы, возможностью передачи действия этого поля молекулам растворителя. При соответствующем наборе этих факторов растворенная молекула может связывать вокруг себя большое число молекул сольвента с образованием сольватной оболочки большой толщины. В результате сольвент насыщается при весьма малых концентрациях растворяемого вещества. [c.94]

    Такое положение вещей сохраняется и в общем случае если связываются моменты неэквивалентных электронов, то конфигурация и прямое произведение оболочек имеют нулевое пересечение а если связываются моменты эквивалентных электронов, то конфигурация является подпространством прямого произведения оболочек. [c.129]

    В этом ряду по мере уменьшения ионного радиуса увеличивается гидратация ионов и, следовательно, их дегидратирующая способность. Поэтому можно было бы ожидать, обратной закономерности — увеличения способности ионов снижать ККМ от s+ к Li+. Кажущееся противоречие обусловлено тем, что образование гидратной оболочки экранирует заряд противоионов и снижает их способность связываться с поверхностью мицеллы. Между тем связывание противоионов приводит к уменьшению плотности поверхностного заряда мицелл и снижению электрических сил отталкивания, препятствующих мицеллообразованию. Действие этого фактора уменьшается в ряду от s+ к Li+, и наблюдается снижение эффективности влияния противоионов на ККМ. [c.63]

    По П. А. Ребиндеру, стабилизующее действие гелеобразных адсорбционных слоев стабилизатора обусловливается тем, что высоковязкая прослойка между частицами не успевает выдавиться за время столкновения частиц дисперсной фазы в результате броуновского движения или в потоке. В известных условиях стабилизация дисперсных систем адсорбционно-сольватными слоями, обладающими упругостью и механической прочностью, может безгранично повышать устойчивость системы вплоть до полной фиксации ее частиц. Примером этому может служить отвердевание жидких прослоек между воздушными пузырьками пены в результате геле-образования или полимеризационных процессов. П. А. Ребиндер отмечает, что образования структурно-механического барьера достаточно для стабилизации только тогда, когда на наружной границе адсорбционного слоя поверхностная энергия мала и не резко возрастает на подступах к частице. При наличии хотя и структурированной, но не лиофильной, а лиофобной оболочки все же может происходить слипание частиц путем сцепления оболочек наружными поверхностями. Такого рода явления можно наблюдать при флотации в результате адсорбции поверхностно-активных веществ полярными группами на поверхности гидрофильных твердых частиц. Направленные в водную среду углеводородные цепи связываются друг с другом своеобразной местной коалесценцией гидрофобных оболочек. [c.284]

    Благодаря малому размеру ион водорода внедряется в электронные оболочки молекулы воды, связывается с молекулой воды очень прочной связью и изменяет угол между связями Н—О—Н, возможно, даже изменяя тип гибридизации электронных орбиталей кислорода. Ионы же щелочных металлов не могут проникать в электронные оболочки молекулы воды, связь их с молекулой воды значительно слабее, а значение угла [c.123]

    Наличие замкнутой электронной оболочки связывают со стабильностью системы i[50, 51, 53]. Системы, которые не имеют замкнутой электронной оболочки, либо должны быть химически активными (например, радикалы), либо должны иметь склонность к таким геометрическим деформациям углеродного скелета, которые делают невозможным корректное использование л-электронной модели. Описанная выше ситуация легко переводится на язык теории графов, так как связываюи] ие уровни соответствуют положительным собственным числам матрицы смежности, разрыхляющие — отрицательным и несвязывающие — нулевым. [c.34]

    У спермиев морского ежа акросомальную реакцию вызывает полисахаридный компонент (полимер сульфатироваппой фруктозы) студенистой оболочки яйца если выделить это вещество из яиц и добавить его к сперматозоидам, оно за несколько секунд инициирует обычную акросомальную реакцию. Полисахарид студенистой оболочки связывается с глико протеиновым рецептором плазматической мембраны спермия, [c.43]

    Таким образом, в клеточной оболочке минеральные вещества, поступающие из внешней среды, могут связываться и удерживаться ее структурными элементами, живой цитоплазмой и рас- твором, имеющимся в порах. Скорость связывания различных изотопов структурными элементами живой цитоплазмы показывает, что этот процесс осуществляется или на поверхности в плаз-модесмах, или в порах, которые содержат цитоплазму. Н, Г, Потапов, используя метод дифференциального центрифугирования и радиоактивные изотопы 5, Р, "I, выяснил их распределение по структурным элементам клетки. Установлено,,что в клеточных оболочках связывается не более 20% серы и фосфора, а йода — 50% всего поглощенного за определенное время вещества. [c.99]


    У спермиев морского ежа акросомальную реакцию вызывает полисахаридный компонент (полимер сульфатированной фруктозы) студенистой оболочки яйца если выделить это вещество из яиц и добавить его к сперматозоидам, оно за несколько секунд инициирует обычную акросомальную реакцию. Полисахарид студенистой оболочки связывается с гликопротеиновым рецептором плазматической мембраны спермия, вызывая ее деполяризацию, по-видимому, в результате такой деполяризации в мембране открываются каналы для Са , что позволяет ионам Са войти в спермий. В то же время полисахарид студенистой оболочки активирует протонные насосы плазматической мембраны спермия, эти насосы обеспечивают отток из клетки ионов Н в обмен на [c.43]

    Большая часть полярных атомных групп на поверхности белков и нуклеиновых кислот расположена близко друг к другу, так что молекула воды в гидратной оболочке может связываться с поверхностью двумя водородными связями [138— 140]. Поэтому хорошей моделью для изучения свойств воды полярной поверхности биополимеров могут служить полифунк-циональные низкомолекулярные соединения со сближенными полярными группами, такие, например, как сахара, аминокислоты и др. [c.54]

    Теория электронных конфигураций (Рассел, Улиг) связывает большую легкость возникновения пассивного состояния с неукомплектованностью электронами внутренних оболочек переходных металлов, занимающих средние участки больших периодов периодической системы элементов — Сг, Ni, Со, Ре, Мо, W, имеющих незаполненные d-уровни в металлическом состоянии. [c.309]

    Лиофильность и лиофобность коллоидов. Лиофиль-ностью называется способность частиц коллоида очень сильно и в большом количестве связывать молекулы дисперсионной среды, образуя сольватные оболочки. В противоположном случае, т. е. когда частицы не могут так сильно взаимодействовать с этими молекулами, говорят о лиофобиости коллоида. В частном случае водных коллоидных растворов в том же смысле пользуются терминами гидрофильность и гидрофобность . Разные коллоидные системы могут обладать различной степенью лиофильности. [c.507]

    Согласно наиболее распространенной гипотезе, кристаллизация твердых углеводородов из масла, приводящая к его застуднева-Пию, рассматривается как образование в системе парафин — масло пространственной сетки (или каркаса), которая, иммобилизуя жидкую фазу, препятствует ее движению. Сцепление частиц дисперсной фазы происходит по ребрам монокристаллов, где наблюдается разрыв пленок дисперсионной среды образовавшийся гель обладает определенной механической прочностью. Другая гипотеза связывает застудневание с возникновением сольватных оболочек жидкой фазы вокруг кристаллов парафина. Дисперсионная среда, иммобилизированная вокруг дисперсных частиц, значительно увеличивает их объем, что повышает внутреннее трение всей системы и понижает ее текучесть. Предполагают, что при сдвиге, обусловленном механическим воздействием, толщина сольватных оболочек уменьшается и гель может превращаться в золь. При понижении температуры масел развитие процесса ассоциации приводит к образованию мицелл, вызывающих застудневание системы независимо от того, выделяется твердая фаза или нет. Добавление депрессоров значительно снижает как статическое, так и динамическое предельное напряжение сдвига депрессоры задерживают появление аномальной вязкости, сдвигая начало образования структуры в область более низких температур. [c.151]

    Условием для возникновения водородной связи является большая величина электроотрицагельности у атома, непосредственно связаного в молекуле с атомом водорода. Положительно поляризованный атом во.дорода, по существу почти лишенный электронного облака, способен, благодаря своему малому размеру, проникать в электронную оболочку отрицательно поляризованного атома (фтора, кислорода, азота). В результате этого атом водорода одной молекулы связывается неподеленной электронной парой ат(1ма электроотрицательного элемента другой молекулы. Эта связь атома водорода, входящего в одну молекулу, с атомом электроотрицательного элемента, входящего в другую молекулу, и является водородной связью. Ниже схематически показана ас-соцмация двух молекул воды посредством водородной связи  [c.64]

    Поскольку наиболее распространен случай, когда температура гильзы термокомпенсатора изменяется экспоненциально вдоль оси, если отсчитывать расстояние от оболочки, рис. П6.6 можно использовать для упрощенной предварительной прикидки. На этом графике отношение длины к диаметру связывается с разностью температур гю оси при нескольких значениях отношения диаметра к толщине стенки гильзы и при значении допустимого напряжения сдвига 700 кПсм . [c.149]

    В брая гипотеза связывает застудневание системы парафин — масло со взаимодействием приходящих в соприкосновение соль-ватных оболочек вокруг кристаллов парафина. Предполагают, [c.89]

    Одно время химики-коллоидники объясняли большинство явлений существованием сольватационных оболочек. Однако с современной точки зрения влияние гидратации не так велико. Даже наиболее сильные гидрофильные группы, а именно ионы, связывают только один или два молекулярных слоя воды, в то время как умеренно гидрофильные группы (такие как —ОН, —СООН, —ХНа) просто соединяются в воде водородными связями. Поэтому гидратированная поверхность (например, целлюлозы) не оказывает значительного действия на расстоянии нескольких ангстрем .  [c.83]

    Используемые в органической химии методы анализа и синтеза позволяют однозначно определить порядок связывания атомов в молекуле (исключениями являются лишь случаи таутомерии и перегруппировок). Под порядком связывания понимают взаимное геометрическое расположение соседних атомов в молекуле и пространственно-статическую модель молекулы в целом. В классической структурной теории эти эмпирические данные связывались с гипотетическими представлениями о валентности, например, с высказанными Кекуле. Все это сохранило свое значение и в настоящее время молекулярные модели структурной теории дают правильное описание атомных скелетов молекул. Однако, в соответствии с представлениями об атоме как совокупности ядра и оболочки, оказалось необходи.мым дополнить указан- [c.46]

    При эволюции ПС могут образоваться, как минимум, два вида карбенов, если последние рассматривать как ПС с выродившимися сольватными оболочками за счет полимеризационного перехода из нее в ядро молекул асфальтенов. Первый вид - это анизотропный карбен (рис. 1.16), который получается, когда ПС образована голоядерными структурами. В отсутствие длинных алкильных заместителей асфальтены в ядре будут связываться за счет спин-спинового и я-взаимодействия, что способствует росту ядра в направлении оси "С" графитовой структуры. Утонение сольватной оболочки до слоя диамагнитных молекул соответствует моменту образования карбенов, коллективное состояние которых может быть отнесено к так называемым полимерным жидким кристаллам, которые в последнее время обнаружены и интенсивно исследуются [51,52]. Различие в размерах карбенов и их молекулярном весе не может препятствовать образованию мезофазы. Такая возможность показана в работе [53]. Образование вторичной мезофазы в нефтяных дисперсных системах обнаружено в работе [54] при термолизе. Такие карбены приводят к образованию волокнистого нефтяного углерода, как это, например, показано в работе [c.45]

    Такие мицеллы связывают в сольватные оболочки большие количества углеводородов среды, что и снижает статическое нанря- ение сдвига с увеличением содержания присадки. Дальнейшее [c.91]

    При сплавлении кристаллических оксидов (например, ТЮг, РегОз, АЬОз и подобных им соединений с прочной кристаллической решеткой) с веществами типа персульфатов и карбонатов схему взаимодействия можно себе представить следующим образом. В решетке оксидов положительные ионы располагаются в тетраэдрических или октаэдрических пустотах плотноупакован ных ионов кислорода. Атомы или катионы освобождаются от этих оболочек, если сильные антиоснования связывают ионы кислорода, входящие в их состав  [c.391]

    Жесткие кислоты. Электронная оболочка жестких кислот характеризуется высокой стабильностью относительно внешних электрических полей. Наиболее жесткой кислотой является протон, который из-за отсутствия электронной оболочки и чрезвычайно малого радиуса прочно связывается с активным центром молекулы основания. Недеформируемой электронной оболочкой обладают также катионы с электронной конфигурацией инертного газа, такие как Са +, АР+, Т1 +, в которых электрические и магнитные моменты всех электронов полностью скомпенсированы. Эти катионы образованы в основном элементами главных подгрупп периодической системы. К последним близки по свойствам некоторые катионы переходных металлов с не полностью занятой d-oбoлoчкoй, например Мп + и Ре +. Способность к присоединению оснований возрастает по мере увеличения ионного потенциала. Кроме того, к жестким [c.396]

    В растворителях с высокой диэлектрической проницаемостью участие растворителя в образовании ионов увеличивается за счет влияния диэлектрических свойств. В зависимости от значения диэлектрической проницаемости ионы, образовавшиеся в результате разрушения ионной решетки или гетеролиза полярной связи, либо ассоциированы, либо находятся в растворе в виде отдельных ионов, окруженных сольватной оболочкой. При использовании растворителей с низкой диэлектрической проницаемостью возникают преимущественно ионные ассоциаты и ионные пары, в которых два или более иона связываются электростатическими силами. Ассоциированные ионы образуют самостоятельные частицы и вследствие взаимного насыщения электрических зарядов не дают вклада в электрическую проводимость раствора. При переходе к среде с более высокой диэлектрической проницаемостью электростатическое притяжение между катионами и анионами в соответствии с законом Кулона (разд. 32.3.1) ослабляется и образуются отдельные, большей частью сольватированные ионы. При растворении полярных соединений в растворителе с высокой диэлектрической проницаемостью это состояние достигается без каких-либо промежуточных состояний. Процесс перехода ионных ассоциатов в свободные ионы называют диссоциацией. Весь процесс можно записать с помощью следующей схемы последовательных реакций [c.451]

    Наличие глубокой потенциальной ямы на потенциальной кривой слева от положительного максимума объясняет механическую прочность коагулята. Частицы на близких расстояниях прочно связываются друг с другом в результате действия ван-дер-ваальсовых сил, и образовавшиеся агрегаты приобретают некоторые свойства твердого тела. Минимум потенциальной кривой, расположенный в области отрицательных значений энергии взаимодействия, очевидно, объясняется уравновешиванием силы молекулярного притяжения силой отталкивания электронных оболочек (силы Борна) и отвечает физическому контакту обеих частиц. Это наиболее устойчивое состояние системы, в котором она обладает наименьшей свободной энергией. [c.280]

    При значительном повышении концентрации частиц в результате их дальнейшего выделения или в результате уменьшения количества свободной воды частицы начинают связываться между собой гидратньши оболочками. Система лереходит в состояние геля с мало прочной (коагуляционной по П. А. Ребиндеру) структурой. Дальнейшее уменьшение количества свободной воды может вызвать постепенное твердение геля. В таких системах процессы перекристаллизации частиц могут происходить, но с пониженной скоростью. Постепенный рост кристаллов, сопровождающийся образованием сростков между ними, тоже будет приводить к твердению материала и приобретению их механической прочности. [c.21]

    П. А. Ребиндер с сотр. количественно исследовал явление тиксотропии. Он показал, что в коагуляционных тиксотропных структурах, обратимо восстанавливающихся после разрушения, частицы связываются между собой межнолеку-лярными силами через свои остаточные сольватные оболочки, как, например, в [c.23]


Смотреть страницы где упоминается термин оболочек связывающие: [c.91]    [c.162]    [c.69]    [c.112]    [c.316]    [c.624]    [c.154]    [c.347]    [c.239]    [c.79]    [c.60]    [c.127]   
Общая химия (1968) -- [ c.95 , c.96 ]




ПОИСК





Смотрите так же термины и статьи:

КАО связывающая

Оболочка



© 2025 chem21.info Реклама на сайте