Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Связь электронная теория

    По электронной теории Льюиса, кислотой и основанием являются вещества, являющиеся соответственно акцептором и до — нором электронных пар. Льюисовские кислоты (Ь—кислоты) и основания могут не содержать протонов и, следовательно, являются апротонными. Кислотно — основное взаимодействие заключается в образовании донорно-акцепторной связи типа [c.90]

    В соответствии с электронной теорией, окисление связано с переносом электронов, причем окисляющие агенты принимают их а восстанавливающие отдают, например  [c.129]

    Постройте диаграмму электронных уровней комплексов Ре(Н2 0) и Ре(СН)б" в рамках теории валентных связей и теории кристаллического поля. Кратко сопоставьте полученные модели электронного строения комплексов. [c.250]


    Электронная теория. Согласно электронной теории, разработанной Льюисом, основание — это соединение, поставляющее электронные пары для образования химической связи,— донор электронных пар кислота — вещество, принимающее электронные пары,— акцептор электронных пар. Кислотно-основное взаимодействие, согласно электронной теории, заключается в образовании донорно-акцепторной связи. В результате взаимодействия кислоты с основанием образуются солеподобные вещества, называемые ад-дуктами. Часто (но не всегда) их удается выделить как индивидуальные соединения. [c.283]

    Мы видим, что электронная теория Льюиса рассматривает нейтрализацию в водных растворах, взаимодействие аммиака с галогенидами бора, комплексообразование, реакции ангидридов с водой как сходные процессы. Действительно, с точки зрения теории химической связи во всех этих процессах взаимодействие между частицами имеет одинаковую природу — образуется донорно-акцепторная ковалентная связь. Вещества, являющиеся донорами электронных пар, часто называют основаниями по Льюису, акцепторы электронных пар — кислотами по Льюису. [c.252]

    Недостатком электронной теории является то, что установление природы химической связи и выяснение вопроса о наличии или отсутствии донорно-акцепторного взаимодействия часто представляет очень сложную задачу. Поэтому для многих реакций пока невозможно сказать, следует ли их причислять к кислотно-основным в понимании теории Льюиса или нет. [c.252]

    Исследование природы химической связи и строения молекул развивалось параллельно с изучением строения атома. К началу двадцатых годов были разработаны основы электронной теории химической связи (Льюис, Коссель, Борн). Квантово-механическая теория ковалентной связи развита Гейтлером и Лондоном (1927). Тогда же получили развитие учение о полярной структуре молекул и теория межмолекулярного взаимодействия. [c.19]

    Спектральные линии, отвечающие переходу электрона с одного уровня на другой, большей частью обнаруживают тонкую структуру, т. е. состоят из нескольких близко расположенных отдельных линий, что указывает на различие в энергии связи некоторых электронов данного энергетического уровня. По этому признаку электроны какой-нибудь данной оболочки разделяют на подуровни, обозначаемые буквами 5, р, й, /. Существование такого различия в энергии связи потребовало введения в теорию атома второго квантового числа, которое отражало бы. различие в энергии связи электронов, принадлежащих к различным подуровням данной оболочки. Это побочное квантовое число обозначается буквой I. Согласно положению квантовой механики, оно может принимать значения любых целых чисел в пределах от О до (п—1), где п означает главное квантовое число. Таким образом, в четвертой оболочке (л = 4) электроны подуровней з, р, с1 и I характеризуются соответственно побочными квантовыми числами О, 1, 2 и 3. Также и в других оболочках побочное квантовое число I связано с соответствующей подгруппой. Число подуровней в каждой данной оболочке равно, таким образом, главному квантовому числу ее. Дальнейшее развитие данных о спектрах атомов привело к необходимости введения еще двух квантовых чисел, отражающих различия в состояниях электронов в атомах. Третье квантовое число характеризует положение орбиты данного электрона в атоме. Оно называется обычно магнитным квантовым числом и обозначается через т. Это число может иметь значения любых целых чисел в пределах от +1 д.о —I, включая 0. Таким образом, для любого подуровня число возможных значений магнитного квантового числа т равно 2/+1. Например, при / = 3 магнитное квантовое число т может иметь семь значений +3, +2, -Ы, О, -1, -2 и -3. [c.37]


    Электронная теория объясняет зависимость теплового эффекта хемосорбции от величины адсорбции и ряд других закономерностей катализа. Однако без использования основных положений квантовой теории химической связи нельзя объяснить специфику взаимодействия катализатора с конкретной молекулой. Электронная теория катализа описывает состояние катализатора. Квантовая теория химической связи описывает взаимодействие молекул, осуществляющееся через взаимодействие атомов. Рассматривая взаимодействие молекулы субстрата с поверхностью катализатора, завершающееся возникновением химической связи, необходимо определить реакционные центры, т. е. атомы в молекуле и на поверхности катализатора, которые могут взаимодействовать. При определении реакционных центров и качественной оценке энергии взаимодействия между ними можно руководствоваться основными положениями метода возмущенных орбиталей (см. 214), положением о необходимости соответствия взаимодействующих орбиталей. [c.659]

    Исследование природы химической связи и строения молекул развивалось параллельно с изучение. строения атома. К началу двадцатых годов текущего столетия Косселем и Льюисом были разработаны основы электронной теории химической связи. Гейтлером и Лондоном (1927) была развита квантовомеханическая теория химической связи. Тогда же получили развитие учение о полярной структуре молекул и теория межмолекулярного взаимодействия. Основываясь на крупнейших открытиях физики в области строения атомов и используя теоретические методы квантовой механики и статистической физики, а также новые экспериментальные методы, такие как рентгеновский анализ, спектроскопия, масс-спектроскопия, магнитные методы, метод меченых атомов и другие, физики и физи-ко-химики добились больших успехов в изучении строения молекул и кристаллов и в познании природы химической связи и законов, управляющих ею. [c.8]

    Теория протолитического равновесия (Бренстеда) не может объяснить кислотно-основные свойства апротонных веществ, в состав которых водород не входит, как, например, галогениды бора и алюми-1ШЯ, хлорид олова (IV) и др. Кислотно-основные свойства апротонных веществ рассматриваются на основе электронной теории кислот и оснований (Льюис). Отличительным признаком кислоты и основания по электронной теории является их взаимная нейтрализация, осуществляемая образованием ковалентной связи между атомом в молекуле основания, обладающим свободной парой электронов, и атомом в молекуле кислоты, в электронную оболочку которого эта пара электронов включается. [c.421]

    Электронная теория предсказывает два вида взаимосвязи между изменением электропроводности полупроводника и изменением его каталитической активности. При акцепторной реакции на п-полу-проводнике (или донорной реакции на р-полупроводнике) связь между проводимостью полупроводника и его каталитической активностью должна быть прямая. При донорной реакции на п-полупроводнике (или акцепторной реакции на р-полупроводнике) эта связь обратная. [c.457]

    Однако электронная теория катализа имеет и ряд недостатков. Ионы адсорбата и ионы полупроводника рассматриваются как бесструктурные несжимаемые точечные ионы. Участием конкретных атомных орбиталей (х, р, и др.) в образовании связей катализатор— реагент пренебрегают. [c.457]

    Молекула олефина состоит в общем случае из этиленовой группировки и двух алкильных радикалов В СН=СН Двойная связь не только сама способна к различным реакциям, но и оказывает значительное влияние на прочность различных связей в алкильных радикалах, что подробно разобрал Шмидт (210) в своем Правиле двойной связи , исходя из основных положений электронной теории валентности. [c.107]

    Современная электронная теория валентности и электронная формула придают простой и двойной связя.м в формуле бензола Кекуле реальный физический смысл. [c.471]

    В данном учебном пособии сконцентрирован, систематизирован и подан с единых теоретических позиций основной материал, относящийся к каждой теме. Для аргументации высказанных положений широко использованы современные представления электронной теории органической химии и основные физико-химические характеристики органических веществ (ди-польные моменты, межатомные расстояния, энергии диссоциации связей, константы кислотности и др.). [c.5]

    Химическая связь между атомами осуществляется с помощью электронов. Следовательно, теория химической связи должна быть обязательно электронной теорией. [c.19]

    Электронная теория значительно расширила понятие о кислотах и основаниях, позволив интерпретировать некоторые свойства веществ с единой точки зрения, однако эта теория имеет и недостатки. Одно из основных возражений против теории Льюиса заключается в том, что в этой теории для отнесения вещества к кислоте или основанию используется механизм его образования, что ставит классификацию в тесную зависимость от взглядов на природу химической связи. [c.33]

    Таким образом, проведенное исследование позволило сделать вывод, что химическая связь в молекуле водорода осуществляется путем образования пары электронов с противоположно направленными спинами, принадлежащей обоим атомам. Разработанная на этой основе теория химической связи и для более сложных молекул получила название метода валентных связей. Важным положением является то, что всякий раз, когда химическая связь образуется, спины пары электронов должны быть антипараллельными. Это находится в соответствии с принципом Паули и подчеркивает, что при образовании химической связи электроны переходят в новое квантовое состояние. [c.103]

    Ионные связи образуют элементы, сильно отличающиеся по электроотрицательности. При этом происходит перемещение электронов от одних атомов к другим и возникает электростатическое взаимодействие между образующимися ионами. Однако полного перехода электронов от одного атома к другому никогда не происходит, а следовательно, чисто ионной связи не бывает. Существование и свойства соединений с другими типами химических связей классическая теория объяснить не может. [c.27]

    Чем с точки зрения электронной теории отличается металлическая связь от ковалентной Ответ обоснуйте. [c.157]

    На образце окиси циика, поверхность которой была тщательно очищена от посторонних газов, адсорбировали кислород, а затем измеряли электропроводность и работу выхода электрона. Оказалось, что адсорбированный кислород уменьшает электр0пр01В01ДН0Сть окиси цинка и увеличивает работу выхода электрона. Этот опыт подтверждает, что между твердым телом и адсорбированной частицей происходит электронный обмен. Кислород — акцептор электронов — забирает электроны из твердого тела, число их в адсорбенте уменьшается и электропроводность падает. Чем больше акцепторов электронов на поверхности, тем больше ее отрицательный заряд и работа выхода электрона — показателя этого процесса. При адсорбции газа — донора электронов (этилеп или другие углеводороды) — наблюдается обратная картина электропроводность увеличивается, а работа выхода уменьшается. Такое перераспределение электронов показывает, что газы образуют с окисью цинка химическую связь. Электронная теория предполагает, что возможно образование связей трех типов  [c.84]

    Электронная теория катализа рассматривает твердое тело как единое электронное хозяйство, а адсорбцию или катализ — как нарушение распределения электронов по энергетическим уровням. Одна ко на поверхности катализаторов существуют отдельные группы атомов, обладаю-Щ1ге определенной электронной структурой. Между адсорбированными молекулами и этими группами образуются химические связи. Электронная теория в настоящее время не в состоянии установить природу таких активных центров. [c.92]


    Согласно классическому способу написания, нитрогруппа содержит два одинаково связанных кислородных атома, а именно связанных двойной связью. Электронная теория показала, что это не может отвечать действительности. Вместо этого предложена формула, где один кислородный атом связан двойной, а Д1 >угой семиполярной связью (т. I, стр. 33). Однако допущение неравенства связи обоих кислородных атомов является недостатком по сравнению с классической фopмУJЮй. Дипольные моменты ароматических динитросоединений показывают, что момент нитрогруппы направлен по линии, проходящей межд обоими атомами кислорода, что несовместимо с неравноценностью связи обоих кислородн1>1х атомов. Например, п-динитро-бензол при несимметричном строении нитрогруппы должен был бы иметь Д11П0Л1Л1ЫЙ момент, если только ие сделать очень невероятного допущения, что обе нитрогруппы находятся как раз в том положении, в котором их момент при несимметричном строении нитрогруппы уничтожается (стр. 85). [c.385]

    I ых и свободных л-разрыхляющих молекулярных орбиталей. Как указывалось уанее (см. рис. 54), в молекуле бензола 2р -электроны шести атомов углерода (.бразуют нелокализоаанную л-связь. Согласно теории молекулярных орбиталей этому представлению отвечает возникновение из шести атомных 2р -србиталей шести молекулярных л-орбиталей, три иэ которых оказываются связывающими, три другие — разрыхляющими  [c.520]

    Применение электронных представлений к гетерогенному катализу приводит к интересным, хотя пока только качественным результатам, показывающим, что каталитическая активность связана с электронным состоянием катализирующей по-нерхности. Однако следует помнить, что все теоретические построения связаны с идеальным кристаллом. Поэтому выводы мектронной теории оказываются применимыми лишь в предельном случае и практически количественно не могут быть пока сопоставлены с опытными данными. Интенсивное развитие в последние годы этого раздела теории катализа позволяет надеяться, что в недалеком будущем будут разработаны количественно сопоставимые с опытом варианты электронной теории катализа. [c.368]

    Обратим внимание на то, как одни и те же факты объясняются двумя соверщенно различными теориями-теорией валентных связей и теорией кристаллического поля. Обе теории утверждают, что низкоспиновые октаэдрические комплексы возникают, когда для -электронов, первоначально принадлежавщих центральному иону металла, доступны только три -орбитали с низкой энергией. Высокоспиновые октаэдрические комплексы воз- [c.231]

    Авторы, объясняющие реакцию алкилироваиия, исходя из предположения об ионизации молекул изопарафина с разрывом связи С—Н, используют основные положения карбоний-ионного механизма каталитической полимеризации олефилов, разработанного Витмором с сотр. [7] и получившего в настоящее время широкое признание. В основе механизма каталитической полимеризации, предложенного Витмором, лежит электронная теория химического взаимодействия (реакций). Механизм реакции цепной. Первым звеном в этой цепи при контакте олефина с кислотным катализатором является образование исходного карбоний-иона путем присоединения иона водорода кислоты по двойной связи  [c.11]

    Большой вклад в развитие представлений о механизме каталитического действия внесли подходы, развитые рядом авторов теория активных ансамблей Кобозева [5], химическая теория активной поверхности Рогинского [6], теория Борескова промежуточного химического взаимодействия в гетерогенном катализе и зависимости удельной каталитической активности от химического состава и строения катализатора [7], теория Писаржев-ского о связи электронных свойств твердого тела с его каталитической способностью [8], электронные теории кристаллического поля и поля лигандов [91, теория поверхностных соединений координационного и кластерного типов [9] и др. [c.11]

    Классификация Рогинского [1 ] основана на том, что на катализаторах первого класса получаются радикалоподобные, а на катализаторах второго класса — ионоподобные соединения она дает общий, и потому качественный, ответ на вопрос о селективности. В ее первоначальной форме эта классификация идентифицировала первый класс как электронные проводники (металлы и полупроводники), а второй класс — как твердые тела, в которых нет свободных электронов (изоляторы), и это подразделение послужило основой для так называемой электронной теории катализа, развитой, в частности, Волькенштейном [2] на основе чисто физической модели твердого тела. Однако ценность классификации Рогинского не связана с одной этой частной теорией. [c.14]

    Как показал Лондон (1930) на основе квантовой механики, мгновенные диполи, возникающие в атомах и молекулах при вращении электронов, тоже вызывают взаимное притяжение молекул. Взаимное колебание атомов в молекулах и взаимные столкновения молекул вызывают частые сближения нх между собой. Быстрые вращения электронов в атомах (и молекулах) в этих условиях вызывают в них быстро сменяющиеся (т. е. коротко периодические) возмущения. Вращение электронов в атомах происходит с гораздо больщей частотой, чем колебания атомов в молекуле (и тем более, чем частота столкновений самих молекул). Поэтому сближение атомов отражается на движении электронов в атомах движение электронов в обоих атомах начинает совершаться в такт, ибо это отвечает меньшему запасу энергии системы и обусловлиг вает взаимное притяжение молекул. Такое взаимодействие называется дисперсионным. (Название произошло от того, что количественная теория взаимодействия тесно связана с теорией дисперсии света.) Энергия дисперсионного взаимодействия дисп. не зависит от температуры и обратно пропорциональна шестой степени расстояния между молекулами. [c.88]

    В молекулах или в кристаллах соединений с и о и н о й связью содержатся не нейтральные атомы элементов, а их ионы, и, например, хлористый натрий состоит из ионов Na+ и С " не только в водных растворах, но и в любом его состоянии. Из этих ионов состоят, в частности, и кристалл поваренной соли и молекулы Na l в парах. Таким образом, в отношении ионных соединений развитие электронной теории валентности избавило гипотезу электролитической диссоциации от задачи объяснить процесс образования ионов, так как при растворении такого электролита происходит лишь разъединение ионов, а не образование их. Переход ионов в раствор происходит в результате взаимодействия их с молекулами растворителя, в результате образования связей между ионом и молекулами растворителя (сольватация ионов) и, в частном случае, молекулами воды (гидратация ионов). [c.383]

    Окпслсние первоначально рассматривалось как реакция присоединения кислорода к какому-либо веществу. Противоположный процесс — отнятие кислорода от вен1,ества (или присоединение водорода к нему)—называли реакцией восстановления. Развитие электронной теории строения атомоа и химической связи да.- ю возможность широко обобщить представления об окислительно-вос-стаио- штельных реакциях. [c.54]

    Электронная теория катализа допускает существование разных видов связи хемосорбированных частиц из газа на поверхности полупроводника слабой одноэлектронной связи и двух видов прочной двухэлектронной связи — акцепторной и донорной, которые в свою очередь могут иметь ковалентный или ионный характер в зависимости от природы адсорбируемой частицы. Предположим, что адсорбируемая частица является одновалентным атомом электроположительным атомом А (типа Na) или электроотрицательным атомом В (типа С1), а катализатор — полупроводниковый ионный кристалл состава MR (типа Na l), который имеет в узлах решетки и на поверхности кристалла частицы М+, R , М и R. При этом будут наблюдаться следующие шесть случаев химической связи, показанные на схеме (в двух случаях — 2 и 5 — связь не образуется). [c.455]

    Основной недостаток электронной теории катализа на полупро-вод1шках заключается в том, что свойства поверхности полупроводника сопоставляются с физическими свойствами твердого тела, хотя между ними имеется только косвенная связь. И те и другие зависят от химического состава и структуры вещества катализатора, но зависимость эта может быть разная. [c.457]

    С появлением электронной теории химической связи представлению о валентности был придан физический смысл. Было постулировано, что каждая связь центрального атома с периферическими осуществляется парой электронов, которая принадлежит обоим связанным атомам и распределяется между ними. Валентность атома в соединении равна числу его электронов, участвующих в связи максимальная валентность равна числу алентных электронов атома. Так, водород одновалентен, так как имеет один валентный электрон, кислород по числу неспаренных электронов двухвалентен, углерод четырехвалентен  [c.78]

    Следовательно, задача заключается в том, чтобы определить, какой из конформеров позволяет объяснить образование оксиэфира как единственного продукта гидролиза. Согласно стерео-электронной теории, продукт реакции должен иметь точно такую же конформацию, что и тетраэдрический интермедиат, и расщепление алкильной связи С—О может произойти только в том случае, если орбитали двух других атомов кислорода этого интермедиата ориентированы антиперипланарно к алкильной связи С—О, подвергающейся расщеплению. [c.245]

    Достижения квантовой химии в настоящее время используются для интерпретации многих химических реакций. Однако современное состояние этой теории таково, что за исключением простейших молекул или ионов (Н ,Н2 , Н2), расчеты могут быть проведены только приближенно, и то лишь при использовании сложного математического аппарата. Чем точнее эти расчеты, тем дальше они, в большинстве случаев, от простых химических формул из них исчезают элементы наглядности, полученные результаты трудно поддаются физической интерпретации и уже не могут быть использованы химиками в их повседневной работе по расщеплению и синтезу сложных органических веществ. Поэтому был создан ряд вспомогательных, так называемых качественных электронных теорий химической связи (Вейтц, Робинсон, Ингольд, Арндт, Полинг, Слейтер, Хюккель, Мулликен и др.), которые нашли широкое распространение и дают плодотворные результаты в построении феноменологической органической химии. Впрочем, необходимо всегда знать границы применения этих приблил<.еиных представлений, и они будут часто указываться в настоящей книге. Наконец, следует отметить, что согласно квантовой механике, невозможно создать точную и вместе с тем наглядную теорию материи, так как любая такая теория неизбежно окажется лишь oгpaничeIiнo правильной. [c.24]

    Теория Льюиса — Лэнгмюра. Заполненное двумя электронами связывающее молекулярное состояние в качественной теории Льюйса называется двухэлектронной связью. Электронное облако обозначается черточкой, соединяющей атомы. При этом несвязывающие, или так называемые одиночные (неподеленные, необобщенные) электронные пары того же электронного слоя отмечаются черточками вокруг символа атома, например  [c.51]

    Дальнейшее развитие теории аналитической химии связано с открытием Н. Н. Бекетовым (1827—1911) равновесия при химических реакциях и закона действующих масс К- М. Гульдбер-гом (1836—1902) и П. Вааге (1833—1900). Появление в 1887 г. теории электролитической диссоциации С. Аррениуса (1859— 1927) дало в руки химикам-аналитикам эффективный количественный метод управления химическими реакциями, а успехи химической термодинамики еще больше расширили эти возможности. Существенную роль сыграла монография В. Оствальда (1853—1932) Научные основы аналитической химии в элементарном изложении , вышедшая в 1894 г. Большое значение для развития окислительно-восстановительных методов аналитической химии имели работы Л. В. Писаржевского (1874—1938) и Н. А. Шилова (1872—1930) по электронной теории окислитель-но-восстановительных процессов. [c.11]

    Второй подход использует теорему Купменса, утверждающую примерное равенство орбитальной энергии и энергии связи Есв электрона. Сравнение экспериментальных данных ФЭС по химическим сдвигам с полученными в результате квантово-механических расчетов орбитальными энергиями позволяет более обоснованно интерпретировать спектр, т. е. проводить отнесение пиков, а также оценивать делаемые в расчетах допущения. В то же время рассчитанные значения энергии обычно плохо согласуются с большими абсолютными значениями Есв- Можно лишь надеяться, что относительные значения, т. е. разности рассчитанных энергий, правильно отражают различия энергий связи, т. е. химические сдвиги АЕа для изучаемых объектов. Полуэмпирические методы квантовой химии даже для молекул, образованных атомами элементов первого ряда, не только не дают количественного соответствия рассчитанных энергий МО и энергий связи электронов, но иногда приводят к неправильному порядку относительного расположения уровней энергии. [c.157]


Смотреть страницы где упоминается термин Связь электронная теория: [c.305]    [c.152]    [c.181]    [c.108]    [c.112]    [c.47]    [c.69]   
Общая химия (1968) -- [ c.89 ]




ПОИСК





Смотрите так же термины и статьи:

Связь теория

Теория электронная

Теория электронов

Электрон связи



© 2025 chem21.info Реклама на сайте