Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Элементы гидраты

    Иногда амфотерными называют и элементы, гидраты окисей которых проявляют амфотерные свойства. Как правило, в периодической системе амфотерные элементы находятся между металлами и неметаллами. Обычно эти элементы растворяются в кислотах и щелочах с вытеснением водорода. Окислы также могут быть амфотерными (например, 5пО) и растворяются как в кислотах, так и в щелочах. [c.209]

Рис. 3.53. Структурные элементы гидрата газов о) 14-гранный полиэдр б) пентагональный додекаэдр в) 16-гранный полиэдр Рис. 3.53. Структурные элементы гидрата газов о) 14-гранный полиэдр б) пентагональный додекаэдр в) 16-гранный полиэдр

    Концентрирование элементов гидратом перекиси марганца [68] [c.52]

Рис. 1. Структурные элементы гидрата газов Рис. 1. Структурные элементы гидрата газов
    Кроме гидратов для элементов подгруппы криптона получены и другие молекулярные соединения клатратного типа (Б. А. Никитин). Различие в устойчивости клатратных соединений используется для разделения благородных газов. В промьшшенном масштабе криптон извлекают вместе с ксеноном при ректификации жидкого воздуха. [c.497]

    Теплота образования А1(0Н)з нз элементов равна 969 090 кал, а соляной кислоты 68 360 кал. Подсчитать теплоту нейтрализации гидрата окиси алюминия соляной кислотой. [c.155]

    Соединения включения с пустотами в виде каналов позволяют достаточно селективно разделять углеводороды, имеющие характерные для определенного гомологического ряда структурные элементы. Соединения включения с пустотами в виде ячеек иногда позволяют разделять два смежных гомолога (например, бензол и толуол) было предложено для этого также использовать соединения типа гидратов углеводородов. Соединения включения с пустотами в виде слоев чаще используют при избирательной сорбции в динамических системах, где наряду с молекулярными характеристиками компонентов заметную роль играет скорость переноса вещества в свободном объеме. [c.92]

    Элементы и принципиальная схема крупномасштабной технологии СОг-В наиболее общем виде технологический комплекс по использованию СО2 для повышения нефтеотдачи включает источник реагента установку по обогащению реагента установку подготовки реагента к перекачке хранилище углекислого газа у головных сооружений системы магистрального транспортирования систему магистрального транспортирования в составе головной перекачивающей (насосной или компрессорной) станции, промежуточных перекачивающих (насосных или компрессорных) станций, линейной части трубопровода, узлов приема—запуска разделителей и др. хранилище углекислого газа у потребителя блок агрегатов высокого давления для закачки двуокиси углерода в пласт распределительные пункты двуокиси углерода нагнетательные скважины для подачи СО2 в нефтяной пласт систему сепарации и подготовки углекислого газа, поступающего из пласта вместе с продукцией скважины трубопровод для подачи подготовленного на промысле углекислого газа в систему закачки другие системы (защиты от коррозии и гидратов, контроля и управления, техники безопасности и охраны природы). [c.165]

    Систематическое исследование солей сульфокислот, образованных элементами второй группы периодической системы, показало [15], что содержание воды в гидратах этих солей тем выше, чем больше молекула сульфокислоты. Гидратация бериллиевых, магниевых, цинковых и кадмиевых солей одной и той же сульфоки-кислоты больше, чем солей кальция, стронция и бария. В концентрациях 0,1—0,5 М кислотность растворов бериллиевых солей сульфокислот меньше, чем растворов хлористого или бромистого бериллия, но больше, чем сернокислого бериллия. [c.199]

    Образование комплексных соединений с донорно-акцепторной связью характерно также для элементов третьей группы периодической системы — бора и алюминия, имеюш,их одну незаполненную р-орбиту. Широко известны в химии, например, комплексные соединения фтористого бора и хлористого аммония. Одним из простейших соединений этого типа является гидрат фтористого бора  [c.34]


    Кремний не является аналогом алюминия, так как это элементы разных групп Периодической системы. Оба гидрата окиси не диссоциируют в водном растворе. Гидрат окиси кремния (кремниевая кислота) не растворяется в кислотах (кроме HF), потому чго сам проявляет кислотные свойства. Гидрат окиси алюминия — амфотер, он растворяется в кислотах, но водород при этом не выделяется. Оба гидрата растворяются в щелочах, но в результате этих реакций водород не выделяется  [c.221]

    Химические свойства элементов VI группы также убедительно свидетельствуют об их неметаллической природе. Элементарные кислород, сера, селен, теллур — окислители они охотно взаимодействуют со многими металлами, их окиси и гидраты окислов обладают кислотными свойствами. [c.69]

    Долгое время считалось, что атомы благородных газов вообще неспособны к образованию химических связей с атомами других элементов. Были известны лишь сравнительно нестойкие молекулярные соединения благородных газов — например, гидраты Аг-бНзО, Кг-бНзО, Хе-бНгО, образующиеся при действии [c.493]

    Растворы можно различать по агрегатному состоянию — твердые, жидкие и даже говорят о газообразных растворах, имея в виду газовые смеси. Последним, точнее идеально-газовым смесям, было уделено некоторое внимание в гл, V в связи с химическим равновесием. О твердых растворах, являющихся предметом изучения, главным образом физики твердого тела и металловедения, будет более подробно упомянуто в следующей главе. В этой же главе будут обсуждаться лишь жидкие растворы — системы, весьма разнообразные по своей природе и характеру межмолекулярного взаимодействия. Так, при растворении серной кислоты в воде наблюдается выделение большого количества теплоты, отмечается образование ряда гидратов определенного состава. Отчасти на основании этих наблюдений Д. И. Менделеев развивал свою химическую теорию растворов. Несомненно, что силы, действующие в упомянутых гидратах серной кислоты, приближаются по св ему характеру к силам химической связи. В качестве другого крайнего случая можно указать на растворы веществ типа аргона и неона (илн других элементов нулевой группы), когда проявляется действие сил только физической природы — относительно слабых сил Ван-дер-Ваальса. [c.262]

    В основе строения атомов Fe, Со и Ni лежит электронная конфигурация аргона 2 8 8. Во внешнем же слое атомы семейства содержат по 2 валентных электрона. Отсюда типичная для этих элементов валентность +2. Это — низшая положительная валентность, которой соответствуют низшие окислы состава ЭО (закиси металлов, например FeO — закись железа). Им отвечают гидраты закиси общей формулы Э (ОН)г, например Fe(0H)2 — гидрат закиси железа. Эти гидраты имеют ясно выраженный основной характер. В образовании высших окислов участвуют электроны второго снаружи слоя. По мере повышения положительной валентности элемента характер окислов и их гидратов изменяется, что особенно ясно выражено у железа Ре(ОН)з— гидроокись, имеющая основной, отчасти амфотерный характер РеОз—кислотный окисел (железный ангидрид). [c.545]

    Долгое время считалось, что атомы благородных газов вообще неспособны к образованию химических связей с атомами других элементов. Были известиы лншь сравнительно нестойкие молекулярные соединения благородных газов — иапример, гидраты Аг-бНаО, Кг-61-120, Хе-бНгО, образующееся при действии сжатых благородных газов на кристаллизующуюся переохлажденную воду. Эти гидраты принадлежат к типу клатратов (см. 72) валентные связи при образовании подобных соединений не возникают. Образованию клатратов с водой благоприятствует наличие в кристаллической структуре льда многочисленных полостей (см. 70). [c.668]

    К веществам, вызывающим горение при воздействии на них воды, относятся металлические натрии и калий, карбид кальция, карбиды щелочных металлов, фосфористые кальций и натрий, гидраты щелочных и щелочноземельных элементов и др. Попадание на такие вещества воды крайне опасно. Например, карбид кальция при действии даже незначительных количеств влаги разлагается с выделением ацетилена. Реакция экзотермическая и протекает с больтинм выделсипсм тепла (выше 500—700 °С), что вызывает самовоспламсиепие образующегося ацетилена и может привести к взрыву. Щелочные металлы ири взаимодействии с водой окисляются, выделяя большое количество тепла, что вызывает самовоспламенение образующегося при этом водорода. В мелко раздробленном виде металлические калий и натрий воспламеняются на влажном воздухе. [c.53]

    Гидраты- центры основных структурообразующих элементов, так называемых оксихлоридов (например, nMg(0H)2 mMg l 2H20), для появления которых необходимо интенсивное перемешивание раствора в течение определенного времени. По истечении этого времени раствор приобретает гелеобразный вид. Если необходимо, снижают показатель фильтрации обработкой раствора солестойкими химическими реагентами, вводят противоизносные и смазочные добавки. [c.51]

    При концентрировании водных растворов формальдегида образуются другие полимерные модификации — так называемые поли-оксиметилены (или параформальдегид ). Согласно исследованиям Штаудингера, они представляют собой смеси продуктов различных ступеней полимеризации, которые удалось частично разделить. В этих полимерных соединениях отдельные формальдегидные остатки связаны друг с другом через атомы кислорода, а концы цепей насыщены элементами воды, так что в данном случае можно говорить о ди-гидратах полиоксиметиленов . Их строение отвечает формуле (III) образование этих соединений можно себе представить как ангидриза-цию гидратированных молекул формальдегида  [c.211]

    Образование комплексов характерно для элементов третьей группы периодической системы — бора и алюминия, имеющих одну незаполненную /7-орбиталь. Широкое применеипе в химии нашли, например, комплексы фтористого бора и хлористого алюминия. Одним нз простейших соединений этого типа является гидрат фтористого бора [c.30]

    Высшие окислы SOg у всех элементов подгруппы углерода являются солеобразующимн. Соответствующие им гидраты имеют состав Н2ЭО3 (метаформа) или a(OH)i (ортоформа). [c.99]

    Если противоионы имеют одинаковую валентность, толщина двойного электрического слоя и число противоионов в диффузном слое определяются специфической адсорбционной способностью ионов, обусловленной, как показано в гл. VI, их прляри.яуе-мостью и гидрата 1ией. Эти свойства ионов определяются их истинным радиусом или, что то же, положением соответствующих элементов в таблице Д. И. Менделеева. [c.186]

    НЕОН (Neon, от греч.— новый) Ne — химический элемент VIII группы 2-го периода периодической системы элемен тов Д. И. Менделеева, п. н. 10, ат. м 20,179, относится к инертным газам Открыт в 1898 г. У. Рамзаем и М. Тра версом. Природный Н. состоит из 3 ста бильных изотопов, известны 5 радио активных изотопов. Н.— одноатомный газ, не вступает в обычные химические реакции. Получен гидрат Ne oHjO и некоторые другие соединения, в которых связь осуществляется молекулярными силами. В промышленности Н. получают из воздуха. Н. применяется в электротехнике для наполнения ламп накаливания, газосветных и сигнальных ламп. Для Н, характерно красное свечение. Н. применяют также в различных электронных приборах, в вакуумной технике. [c.172]


    Для элементов подгруппы титана известны пероксидные соединения. По составу их можно рассматрк вать как гидраты диоксидов, в которых одна (или более) гидроксидная группа заменена на оксидную группу — ООН (от Н2О2). [c.367]

    Число электронов наружной оболочки и энергия связи их с ядром определяют химические свойства атомов. Так, три электрона лития неравноценны. Один из этих электронов связан с ядром атома слабее двух других, так как расположен дальше от ядра, чем первые два электрона. Этот электрон участвует в образовании химической связи поэтому называется валентным. Числом электронов наружной оболочки определяются валентные состояния, характерные для данного элемента, типы его соединений — гидридов, окислов, гидратов солей и т. д. Это можно проследить на любой группе элементов периодической системы. Известно, что в наружных оболочках атома азота, фосфора, мышьяка, сурьмы, висмута находится по пять электронов. Этим определяются их одинаковые, валентные состояния (—3, +3, +5), однотипность гидридов ЭНз,, окислов Э2О3 и ЭаОз и т. д. и, ггаконец, то, что все указанные эле-, менты находятся в одной группе периодической системы. [c.18]

    Диоксиды этих элементов и соответствующие им гидроксиды обладают в основном кислотными свойствами, которые ослабляются от германия к свинцу. Диоксиды SnOj и РЬОа и их гидраты проявляют амфотерные свойства  [c.208]

    Получение осадка оксалата церия, как и других РЗЭ, — это наиболее обычная технологическая и аналитическая операция, используемая для выделения РЗЭ из растворов и часто для отделения их от других элементов, образующих более растворимые оксалаты или прочные оксалатные комплексы (например, Се(III)). Осаждение оксалатов РЗЭ происходит практически количественно, в виде гидратов М2 "(С204)з-Н20. Осадок отфильтровывают, высушивают и прокаливают при - 900°С, при этом происходит разложение [c.74]


Смотреть страницы где упоминается термин Элементы гидраты: [c.30]    [c.45]    [c.33]    [c.215]    [c.177]    [c.39]    [c.441]    [c.220]    [c.225]    [c.423]    [c.433]    [c.73]    [c.153]    [c.261]    [c.316]    [c.448]    [c.488]    [c.539]    [c.98]    [c.99]    [c.100]   
Общая химия (1968) -- [ c.307 , c.336 ]




ПОИСК





Смотрите так же термины и статьи:

Гидраты



© 2025 chem21.info Реклама на сайте